Teng Gao, Dongxin He, Zhe Xu, Junyu Wei, Shijie Xie, Gilbert Teyssède, Zhizhen Liu, Bin Cui
{"title":"Degradation induced by charge relaxation in silicone gels under the ultra-fast pulsed electric field","authors":"Teng Gao, Dongxin He, Zhe Xu, Junyu Wei, Shijie Xie, Gilbert Teyssède, Zhizhen Liu, Bin Cui","doi":"10.1049/hve2.12484","DOIUrl":null,"url":null,"abstract":"<p>The insulating properties of silicone gel used for silicon carbide-insulated gate bipolar transistors encapsulation may deteriorate seriously under ultra-fast pulsed electric fields. The essence of insulation degradation lies in the deterioration of materials caused by dynamic phenomena at microscopic scale, such as charge trapping and detrapping. Different from the steady-state operating condition, insulating materials exhibit a sharp decrease in their insulating properties when subjected to a rapidly changing electric field. To investigate the insulation failure of silicone gel materials under an ultra-fast pulsed electric field, Marcus hopping mechanism for charge response is proposed. By calculating the relaxation time with different defects, we characterise the degradation of the materials. According to the force analysis of space charge, the authors establish a relationship between insulation failures and charge relaxation time. Combined with the experimental results on electrical treeing in silicone gel, the feasibility of the theory is verified. The experimental phenomenon can be well explained, that is, the initial voltage of the electrical trees decreased sharply with shortening the edge time of the pulsed electric field, especially on the nanosecond time scale.</p>","PeriodicalId":48649,"journal":{"name":"High Voltage","volume":"9 6","pages":"1383-1392"},"PeriodicalIF":4.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/hve2.12484","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"High Voltage","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/hve2.12484","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
The insulating properties of silicone gel used for silicon carbide-insulated gate bipolar transistors encapsulation may deteriorate seriously under ultra-fast pulsed electric fields. The essence of insulation degradation lies in the deterioration of materials caused by dynamic phenomena at microscopic scale, such as charge trapping and detrapping. Different from the steady-state operating condition, insulating materials exhibit a sharp decrease in their insulating properties when subjected to a rapidly changing electric field. To investigate the insulation failure of silicone gel materials under an ultra-fast pulsed electric field, Marcus hopping mechanism for charge response is proposed. By calculating the relaxation time with different defects, we characterise the degradation of the materials. According to the force analysis of space charge, the authors establish a relationship between insulation failures and charge relaxation time. Combined with the experimental results on electrical treeing in silicone gel, the feasibility of the theory is verified. The experimental phenomenon can be well explained, that is, the initial voltage of the electrical trees decreased sharply with shortening the edge time of the pulsed electric field, especially on the nanosecond time scale.
High VoltageEnergy-Energy Engineering and Power Technology
CiteScore
9.60
自引率
27.30%
发文量
97
审稿时长
21 weeks
期刊介绍:
High Voltage aims to attract original research papers and review articles. The scope covers high-voltage power engineering and high voltage applications, including experimental, computational (including simulation and modelling) and theoretical studies, which include:
Electrical Insulation
● Outdoor, indoor, solid, liquid and gas insulation
● Transient voltages and overvoltage protection
● Nano-dielectrics and new insulation materials
● Condition monitoring and maintenance
Discharge and plasmas, pulsed power
● Electrical discharge, plasma generation and applications
● Interactions of plasma with surfaces
● Pulsed power science and technology
High-field effects
● Computation, measurements of Intensive Electromagnetic Field
● Electromagnetic compatibility
● Biomedical effects
● Environmental effects and protection
High Voltage Engineering
● Design problems, testing and measuring techniques
● Equipment development and asset management
● Smart Grid, live line working
● AC/DC power electronics
● UHV power transmission
Special Issues. Call for papers:
Interface Charging Phenomena for Dielectric Materials - https://digital-library.theiet.org/files/HVE_CFP_ICP.pdf
Emerging Materials For High Voltage Applications - https://digital-library.theiet.org/files/HVE_CFP_EMHVA.pdf