Triggerable biomaterials-based osteomyelitis theranostics

BMEMat Pub Date : 2024-04-29 DOI:10.1002/bmm2.12081
Lei Li, Yue Yin, Shengchang Zhang, Junyuan Yang, Pei Li, Huaijuan Zhou, Jinhua Li
{"title":"Triggerable biomaterials-based osteomyelitis theranostics","authors":"Lei Li,&nbsp;Yue Yin,&nbsp;Shengchang Zhang,&nbsp;Junyuan Yang,&nbsp;Pei Li,&nbsp;Huaijuan Zhou,&nbsp;Jinhua Li","doi":"10.1002/bmm2.12081","DOIUrl":null,"url":null,"abstract":"<p>The emergence of multidrug-resistant bacteria poses a significant challenge in the treatment of osteomyelitis, rendering traditional antibiotic treatment strategies inadequate in terms of achieving a complete cure. In recent years, triggerable biomaterial-based, antibiotic-free osteomyelitis treatment strategies have rapidly evolved, demonstrating excellent bactericidal effects. Triggerable biomaterials-based osteomyelitis theranostics encompass physical signal response strategies and host immune modulation approaches. These strategies can be effective against drug-resistant bacteria, circumventing the gradual acquisition of resistance that often accompanies traditional antibiotic treatment. Additionally, the inherent physical properties of the triggerable biomaterials facilitate the precise imaging of osteomyelitis. There is no doubt that triggerable biomaterial-mediated, antibiotic-free therapies are emerging as a trend, which is critically important in combating multidrug-resistant bacteria-induced osteomyelitis. In this review, we summarize the latest advances in osteomyelitis treatment strategies from both pathogen-directed and host-directed perspectives. The design regimens and specific action mechanisms of triggerable biomaterial-based nanoplatforms are also clarified. Finally, we outline the challenges faced by various antibiotic-free therapies and provide an outlook on the prospects for synergistic interactions.</p>","PeriodicalId":100191,"journal":{"name":"BMEMat","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bmm2.12081","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMEMat","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bmm2.12081","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of multidrug-resistant bacteria poses a significant challenge in the treatment of osteomyelitis, rendering traditional antibiotic treatment strategies inadequate in terms of achieving a complete cure. In recent years, triggerable biomaterial-based, antibiotic-free osteomyelitis treatment strategies have rapidly evolved, demonstrating excellent bactericidal effects. Triggerable biomaterials-based osteomyelitis theranostics encompass physical signal response strategies and host immune modulation approaches. These strategies can be effective against drug-resistant bacteria, circumventing the gradual acquisition of resistance that often accompanies traditional antibiotic treatment. Additionally, the inherent physical properties of the triggerable biomaterials facilitate the precise imaging of osteomyelitis. There is no doubt that triggerable biomaterial-mediated, antibiotic-free therapies are emerging as a trend, which is critically important in combating multidrug-resistant bacteria-induced osteomyelitis. In this review, we summarize the latest advances in osteomyelitis treatment strategies from both pathogen-directed and host-directed perspectives. The design regimens and specific action mechanisms of triggerable biomaterial-based nanoplatforms are also clarified. Finally, we outline the challenges faced by various antibiotic-free therapies and provide an outlook on the prospects for synergistic interactions.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Issue Information Nanomedicine hitchhiking on bacteria for treating tumors (4/2024) A biomimetic, triggered-release micelle formulation of methotrexate and celastrol controls collagen-induced arthritis in mice (4/2024) Issue Information Diffusion-induced phase separation 3D printed scaffolds for dynamic tissue repair (3/2024)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1