{"title":"Cover Image","authors":"","doi":"10.1002/mgea.66","DOIUrl":null,"url":null,"abstract":"<p>This issue of MGE Advances highlights the transformative role of machine learning (ML) in shaping the future of materials science. From accelerating the discovery of novel materials to refining predictive models and optimizing manufacturing processes, ML is driving a paradigm shift across the field. The articles in this issue showcase diverse methodologies and applications, demonstrating ML’s power to unravel material complexities, bridge theory and practice, and inspire innovations in high-performance materials.\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":100889,"journal":{"name":"Materials Genome Engineering Advances","volume":"2 4","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-12-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mgea.66","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Genome Engineering Advances","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mgea.66","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This issue of MGE Advances highlights the transformative role of machine learning (ML) in shaping the future of materials science. From accelerating the discovery of novel materials to refining predictive models and optimizing manufacturing processes, ML is driving a paradigm shift across the field. The articles in this issue showcase diverse methodologies and applications, demonstrating ML’s power to unravel material complexities, bridge theory and practice, and inspire innovations in high-performance materials.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
封面图片
本期《MGE进展》强调了机器学习(ML)在塑造材料科学未来方面的变革性作用。从加速新材料的发现到改进预测模型和优化制造流程,机器学习正在推动整个领域的范式转变。本期的文章展示了不同的方法和应用,展示了机器学习在解开材料复杂性、桥梁理论和实践以及激发高性能材料创新方面的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Cover Image Issue Information Integration of materials science and artificial intelligence: From high-throughput screening to autonomous laboratories Unveiling the influence of gravity on pitting corrosion through advanced high-throughput corrosion test method Systematical assessment of phase equilibria and thermodynamic properties in the RE (rare earth metals)—Cu binary systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1