Gentamicin Has No Significant Adverse Effect on Porcine Embryo Development In Vitro

IF 2.7 3区 生物学 Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Molecular Reproduction and Development Pub Date : 2024-12-29 DOI:10.1002/mrd.70008
Rylie S. Noland, Bethany K. Redel, Marissa G. LaMartina, Paula R. Chen, Randall S. Prather
{"title":"Gentamicin Has No Significant Adverse Effect on Porcine Embryo Development In Vitro","authors":"Rylie S. Noland,&nbsp;Bethany K. Redel,&nbsp;Marissa G. LaMartina,&nbsp;Paula R. Chen,&nbsp;Randall S. Prather","doi":"10.1002/mrd.70008","DOIUrl":null,"url":null,"abstract":"<p>The composition of the culture medium affects the viability and developmental competency of porcine embryos produced in vitro. Previous transcriptional profiling has identified areas of improvement in the formulation of these media. Xenobiotic metabolism-related genes were upregulated in in vitro-cultured porcine embryos compared to their in vivo-derived counterparts, and the antibiotic gentamicin is a component of porcine embryo culture media. While effective against a broad spectrum of bacteria, gentamicin has been observed to be toxic to rat embryos and may induce changes in gene expression in cell culture. The objective of this study was to determine if gentamicin has an adverse effect on the development of porcine embryos. After in vitro fertilization, presumptive zygotes were placed in either MU4 medium containing gentamicin or MU4 medium without gentamicin. No difference was detected in blastocyst development, total cell number, apoptotic index, or expression of 3 selected genes between embryos cultured with or without gentamicin (<i>p</i> &gt; 0.05). Therefore, porcine embryos are able to tolerate the presence of 10 μg/mL gentamicin without significant impacts on blastocyst development rate, total cell number, or apoptosis.</p>","PeriodicalId":18856,"journal":{"name":"Molecular Reproduction and Development","volume":"91 12","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/mrd.70008","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular Reproduction and Development","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/mrd.70008","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The composition of the culture medium affects the viability and developmental competency of porcine embryos produced in vitro. Previous transcriptional profiling has identified areas of improvement in the formulation of these media. Xenobiotic metabolism-related genes were upregulated in in vitro-cultured porcine embryos compared to their in vivo-derived counterparts, and the antibiotic gentamicin is a component of porcine embryo culture media. While effective against a broad spectrum of bacteria, gentamicin has been observed to be toxic to rat embryos and may induce changes in gene expression in cell culture. The objective of this study was to determine if gentamicin has an adverse effect on the development of porcine embryos. After in vitro fertilization, presumptive zygotes were placed in either MU4 medium containing gentamicin or MU4 medium without gentamicin. No difference was detected in blastocyst development, total cell number, apoptotic index, or expression of 3 selected genes between embryos cultured with or without gentamicin (p > 0.05). Therefore, porcine embryos are able to tolerate the presence of 10 μg/mL gentamicin without significant impacts on blastocyst development rate, total cell number, or apoptosis.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
5.20
自引率
0.00%
发文量
78
审稿时长
6-12 weeks
期刊介绍: Molecular Reproduction and Development takes an integrated, systems-biology approach to understand the dynamic continuum of cellular, reproductive, and developmental processes. This journal fosters dialogue among diverse disciplines through primary research communications and educational forums, with the philosophy that fundamental findings within the life sciences result from a convergence of disciplines. Increasingly, readers of the Journal need to be informed of diverse, yet integrated, topics impinging on their areas of interest. This requires an expansion in thinking towards non-traditional, interdisciplinary experimental design and data analysis.
期刊最新文献
Decoding Müllerian Duct Epithelial Regionalization Poly(A)-Selected Intergenic Transcripts in In Vivo Developed Bovine Oocytes and Pre-Implantation Embryos The RNA-Binding Protein IGF2BP1 Marks Germ Cells but Is Dispensable for Mouse Fertility Unraveling the Clinical FSH Conundrum: Insights From the Small Ovarian Reserve Heifer Model Issue Information
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1