Improving Nanopore sequencing-based core genome MLST for global infection control: a strategy for GC-rich pathogens like Burkholderia pseudomallei.

IF 6.1 2区 医学 Q1 MICROBIOLOGY Journal of Clinical Microbiology Pub Date : 2025-02-06 DOI:10.1128/jcm.01569-24
Sarah Weigl, Johanna Dabernig-Heinz, Fabian Granitz, Michaela Lipp, Laura Ostermann, Dag Harmsen, Thanh Trung Trinh, Ivo Steinmetz, Gabriel E Wagner, Sabine Lichtenegger
{"title":"Improving Nanopore sequencing-based core genome MLST for global infection control: a strategy for GC-rich pathogens like <i>Burkholderia pseudomallei</i>.","authors":"Sarah Weigl, Johanna Dabernig-Heinz, Fabian Granitz, Michaela Lipp, Laura Ostermann, Dag Harmsen, Thanh Trung Trinh, Ivo Steinmetz, Gabriel E Wagner, Sabine Lichtenegger","doi":"10.1128/jcm.01569-24","DOIUrl":null,"url":null,"abstract":"<p><p>Genomic surveillance of pathogens is essential to trace infections and analyze resistance markers. Core genome multilocus sequence typing (cgMLST) facilitates genomic surveillance by simplified analysis and standardization. However, its application is limited by the poor cost-efficiency of short-read (SR) sequencing. Oxford Nanopore long-read sequencing (ONT-LR), which allows fast on-site analysis with comparatively low costs, could provide an alternative. Despite ONT-LR raw read accuracy improvement, evidence for methylation-based errors accumulates. PCR-based library preparation, suggested as a solution, presumably poses difficulties for GC-rich bacteria. We challenged ONT-LR-based cgMLST using the highly GC-rich pathogen <i>Burkholderia pseudomallei</i> to develop a clinically applicable workflow. Our <i>B. pseudomallei</i> cgMLST scheme was applied to ONT-LR data, and the results were validated against SR data. Native, rapid, and PCR-based library preparation was performed and combined with different basecalling models (SUP@bacterial-methylation, SUP@v4.2, SUP@v4.3, and SUP@v5.0) and polishing strategies (medaka_consensus, medaka_variant, r103_min_high_g360). To ensure reliability across genotypes, we included 14 sequence types and 27 genotypes. The recommended ONT-LR workflow at study initiation (SUP@v4.2, medaka_consensus) showed nearly 200 allele differences compared with the reference for specific strains. PCR-based library preparation resulted in missing targets and typing errors of up to 21 alleles. Native barcoding with SUP@v5.0 basecalling and r103_min_high_g360 polishing outperformed the PCR-based approach in all parameters reducing the error rate to a maximum of two allele differences. The optimized ONT-LR-based cgMLST workflow for <i>B. pseudomallei</i> integrates high resolution and ease of implementation with enhanced cost-efficiency for rapid diagnostics. The developed protocol might serve as a guideline for other GC-rich pathogens.</p><p><strong>Importance: </strong>This study highlights a significant advancement in genomic surveillance of bacterial pathogens, specifically addressing the challenges posed by the GC-rich species <i>Burkholderia pseudomallei</i>. Core genome multilocus sequence typing (cgMLST) is widely used for bacterial typing as it combines high resolution with simple implementation and standardization. To improve cost efficiency and thus accessibility, we changed the sequencing approach from Illumina short-read (SR) to Oxford Nanopore long-read sequencing (ONT-LR). ONT-LR-based cgMLST showed a very high error rate compared with SR-based cgMLST, most likely due to methylation-associated errors. PCR-based library preparation, which is proposed to correct these errors, did not achieve the required accuracy. In contrast, native barcoding with advanced basecalling and polishing strategies massively reduces allelic differences. This optimized ONT-LR cgMLST workflow provides a transformative solution for cost-efficient, high-resolution typing of <i>B. pseudomallei</i>. Furthermore, this study can serve as a guide for similarly challenging bacteria.</p>","PeriodicalId":15511,"journal":{"name":"Journal of Clinical Microbiology","volume":" ","pages":"e0156924"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Clinical Microbiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1128/jcm.01569-24","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Genomic surveillance of pathogens is essential to trace infections and analyze resistance markers. Core genome multilocus sequence typing (cgMLST) facilitates genomic surveillance by simplified analysis and standardization. However, its application is limited by the poor cost-efficiency of short-read (SR) sequencing. Oxford Nanopore long-read sequencing (ONT-LR), which allows fast on-site analysis with comparatively low costs, could provide an alternative. Despite ONT-LR raw read accuracy improvement, evidence for methylation-based errors accumulates. PCR-based library preparation, suggested as a solution, presumably poses difficulties for GC-rich bacteria. We challenged ONT-LR-based cgMLST using the highly GC-rich pathogen Burkholderia pseudomallei to develop a clinically applicable workflow. Our B. pseudomallei cgMLST scheme was applied to ONT-LR data, and the results were validated against SR data. Native, rapid, and PCR-based library preparation was performed and combined with different basecalling models (SUP@bacterial-methylation, SUP@v4.2, SUP@v4.3, and SUP@v5.0) and polishing strategies (medaka_consensus, medaka_variant, r103_min_high_g360). To ensure reliability across genotypes, we included 14 sequence types and 27 genotypes. The recommended ONT-LR workflow at study initiation (SUP@v4.2, medaka_consensus) showed nearly 200 allele differences compared with the reference for specific strains. PCR-based library preparation resulted in missing targets and typing errors of up to 21 alleles. Native barcoding with SUP@v5.0 basecalling and r103_min_high_g360 polishing outperformed the PCR-based approach in all parameters reducing the error rate to a maximum of two allele differences. The optimized ONT-LR-based cgMLST workflow for B. pseudomallei integrates high resolution and ease of implementation with enhanced cost-efficiency for rapid diagnostics. The developed protocol might serve as a guideline for other GC-rich pathogens.

Importance: This study highlights a significant advancement in genomic surveillance of bacterial pathogens, specifically addressing the challenges posed by the GC-rich species Burkholderia pseudomallei. Core genome multilocus sequence typing (cgMLST) is widely used for bacterial typing as it combines high resolution with simple implementation and standardization. To improve cost efficiency and thus accessibility, we changed the sequencing approach from Illumina short-read (SR) to Oxford Nanopore long-read sequencing (ONT-LR). ONT-LR-based cgMLST showed a very high error rate compared with SR-based cgMLST, most likely due to methylation-associated errors. PCR-based library preparation, which is proposed to correct these errors, did not achieve the required accuracy. In contrast, native barcoding with advanced basecalling and polishing strategies massively reduces allelic differences. This optimized ONT-LR cgMLST workflow provides a transformative solution for cost-efficient, high-resolution typing of B. pseudomallei. Furthermore, this study can serve as a guide for similarly challenging bacteria.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Clinical Microbiology
Journal of Clinical Microbiology 医学-微生物学
CiteScore
17.10
自引率
4.30%
发文量
347
审稿时长
3 months
期刊介绍: The Journal of Clinical Microbiology® disseminates the latest research concerning the laboratory diagnosis of human and animal infections, along with the laboratory's role in epidemiology and the management of infectious diseases.
期刊最新文献
Erratum for Snyder et al., "Performance of the LifeScale automated rapid phenotypic antimicrobial susceptibility testing on Gram-negative rods directly from positive blood cultures". Field evaluation of nanopore targeted next-generation sequencing to predict drug-resistant tuberculosis from native sputum in South Africa and Zambia. Retrieval-augmented generation salvages poor performance from large language models in answering microbiology-specific multiple-choice questions. Improving Nanopore sequencing-based core genome MLST for global infection control: a strategy for GC-rich pathogens like Burkholderia pseudomallei. Development and evaluation of a next-generation sequencing methodology for measles virus using Oxford Nanopore Technology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1