Ke Guo, Xinxin Yang, Jin Wang, Wei Chang, Simei Liu, Siqi Zhang, Tingting Zhang, Hao Yan, Yafeng Yan, Jie Wang, Xiping Chen, Churong Yu, Guoquan Wang, Peng Zhao
{"title":"Synthesis and Bioactivity of Selenium Nanoparticles From Tussilago farfara L. Polysaccharides: Antioxidant Properties and MCF-7 Cell Inhibition.","authors":"Ke Guo, Xinxin Yang, Jin Wang, Wei Chang, Simei Liu, Siqi Zhang, Tingting Zhang, Hao Yan, Yafeng Yan, Jie Wang, Xiping Chen, Churong Yu, Guoquan Wang, Peng Zhao","doi":"10.1002/cbdv.202402677","DOIUrl":null,"url":null,"abstract":"<p><p>The present study reports the synthesis of selenium nanocomplexes (Se-TFPs) using purified polysaccharides from Tussilago farfara L. (coltsfoot). It evaluates its structural characteristics, physicochemical properties, and inhibitory effects of Michigan Cancer Foundation-7 (MCF-7) breast cancer cells. The influence of processing conditions on nanoparticle size and stability at 25°C was assessed using particle size and zeta potential measurements. The Se-TFPs were synthesized by optimizing the processing conditions via response surface methodology, yielding nanoparticles with a selenium (Se)-to-polysaccharide mass ratio of 1:13.5, a Se-to-ascorbic acid molar ratio of 1:4.5, a selenite concentration of 10.7 mM, and a reaction time of 4.4 h. The resulting Se-TFPs had an average particle size of 107.2 nm and a zeta potential of -35.1 mV. Structural and physicochemical analyses confirmed successful nanoparticle formation. Compared to TFPs, Se-TFPs exhibited significantly enhanced scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), hydroxyl radicals, and superoxide anion radicals. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, flow cytometry, and cell cycle apoptosis analysis revealed that Se-TFPs effectively inhibited MCF-7 cell proliferation at the S phase, with an IC50 value of 119.62 µg/mL.</p>","PeriodicalId":9878,"journal":{"name":"Chemistry & Biodiversity","volume":" ","pages":"e202402677"},"PeriodicalIF":2.3000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemistry & Biodiversity","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cbdv.202402677","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The present study reports the synthesis of selenium nanocomplexes (Se-TFPs) using purified polysaccharides from Tussilago farfara L. (coltsfoot). It evaluates its structural characteristics, physicochemical properties, and inhibitory effects of Michigan Cancer Foundation-7 (MCF-7) breast cancer cells. The influence of processing conditions on nanoparticle size and stability at 25°C was assessed using particle size and zeta potential measurements. The Se-TFPs were synthesized by optimizing the processing conditions via response surface methodology, yielding nanoparticles with a selenium (Se)-to-polysaccharide mass ratio of 1:13.5, a Se-to-ascorbic acid molar ratio of 1:4.5, a selenite concentration of 10.7 mM, and a reaction time of 4.4 h. The resulting Se-TFPs had an average particle size of 107.2 nm and a zeta potential of -35.1 mV. Structural and physicochemical analyses confirmed successful nanoparticle formation. Compared to TFPs, Se-TFPs exhibited significantly enhanced scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), hydroxyl radicals, and superoxide anion radicals. The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays, flow cytometry, and cell cycle apoptosis analysis revealed that Se-TFPs effectively inhibited MCF-7 cell proliferation at the S phase, with an IC50 value of 119.62 µg/mL.
期刊介绍:
Chemistry & Biodiversity serves as a high-quality publishing forum covering a wide range of biorelevant topics for a truly international audience. This journal publishes both field-specific and interdisciplinary contributions on all aspects of biologically relevant chemistry research in the form of full-length original papers, short communications, invited reviews, and commentaries. It covers all research fields straddling the border between the chemical and biological sciences, with the ultimate goal of broadening our understanding of how nature works at a molecular level.
Since 2017, Chemistry & Biodiversity is published in an online-only format.