Yeji Kim, Jihyun Kim, Yunji Song, Keunhwan Jang, Se Eun Kim, Ha-Jung Kim
{"title":"Sequential transcriptome profiling: comparative analysis of normal and canine lymphoma preceding detailed T-cell and B-cell subtype comparison.","authors":"Yeji Kim, Jihyun Kim, Yunji Song, Keunhwan Jang, Se Eun Kim, Ha-Jung Kim","doi":"10.3389/fvets.2024.1473421","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>As the lifespan of companion animals extends, the incidence of tumor also increases. Among these tumors, lymphoma is reported as the most prevalent hematopoietic tumor with a 80-90% prevalence rate. Ongoing research spans multiple domains, aiming to uncover novel therapeutic targets, including small molecular weight inhibitors, antibody treatments, and subtype-specific selective agents.</p><p><strong>Methods: </strong>Transcriptional profiling was performed on canine lymphoma samples to identify genes and functional pathways associated with pathogenesis, treatment response, and prognosis. Additionally, genes with potential relevance to the clinical characteristics of T-cell lymphoma (TCL), which is characterized by a low treatment response and poor prognosis, were identified through a comparative analysis of different lymphoma subtypes.</p><p><strong>Results: </strong>Within the canine lymphoma group, HERC5 showed consistent upregulation, a gene similarly implicated in human acute myeloid leukemia but previously no reports exist. Additionally, noteworthy genes, including IKZF2, CCL4, SAA1, and CD40, exhibited differential expression in the TCL group compared to the B-cell lymphoma (BCL) group.</p><p><strong>Discussion: </strong>The upregulation of HERC5 may impact on canine lymphoma pathogenicity. Furthermore, the upregulation of IKZF2, CCL4, and SAA1, along with the downregulation of CD40, may contribute to adverse clinical characteristics of TCL in dogs.</p>","PeriodicalId":12772,"journal":{"name":"Frontiers in Veterinary Science","volume":"11 ","pages":"1473421"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11795822/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Veterinary Science","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.3389/fvets.2024.1473421","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Introduction: As the lifespan of companion animals extends, the incidence of tumor also increases. Among these tumors, lymphoma is reported as the most prevalent hematopoietic tumor with a 80-90% prevalence rate. Ongoing research spans multiple domains, aiming to uncover novel therapeutic targets, including small molecular weight inhibitors, antibody treatments, and subtype-specific selective agents.
Methods: Transcriptional profiling was performed on canine lymphoma samples to identify genes and functional pathways associated with pathogenesis, treatment response, and prognosis. Additionally, genes with potential relevance to the clinical characteristics of T-cell lymphoma (TCL), which is characterized by a low treatment response and poor prognosis, were identified through a comparative analysis of different lymphoma subtypes.
Results: Within the canine lymphoma group, HERC5 showed consistent upregulation, a gene similarly implicated in human acute myeloid leukemia but previously no reports exist. Additionally, noteworthy genes, including IKZF2, CCL4, SAA1, and CD40, exhibited differential expression in the TCL group compared to the B-cell lymphoma (BCL) group.
Discussion: The upregulation of HERC5 may impact on canine lymphoma pathogenicity. Furthermore, the upregulation of IKZF2, CCL4, and SAA1, along with the downregulation of CD40, may contribute to adverse clinical characteristics of TCL in dogs.
期刊介绍:
Frontiers in Veterinary Science is a global, peer-reviewed, Open Access journal that bridges animal and human health, brings a comparative approach to medical and surgical challenges, and advances innovative biotechnology and therapy.
Veterinary research today is interdisciplinary, collaborative, and socially relevant, transforming how we understand and investigate animal health and disease. Fundamental research in emerging infectious diseases, predictive genomics, stem cell therapy, and translational modelling is grounded within the integrative social context of public and environmental health, wildlife conservation, novel biomarkers, societal well-being, and cutting-edge clinical practice and specialization. Frontiers in Veterinary Science brings a 21st-century approach—networked, collaborative, and Open Access—to communicate this progress and innovation to both the specialist and to the wider audience of readers in the field.
Frontiers in Veterinary Science publishes articles on outstanding discoveries across a wide spectrum of translational, foundational, and clinical research. The journal''s mission is to bring all relevant veterinary sciences together on a single platform with the goal of improving animal and human health.