{"title":"Multiple machine learning-based integrations of multi-omics data to identify molecular subtypes and construct a prognostic model for HNSCC.","authors":"Xiaoqin Luo, Chao Li, Gang Qin","doi":"10.1186/s41065-025-00380-0","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Immunotherapy has introduced new breakthroughs in improving the survival of head and neck squamous cell carcinoma (HNSCC) patients, yet drug resistance remains a critical challenge. Developing personalized treatment strategies based on the molecular heterogeneity of HNSCC is essential to enhance therapeutic efficacy and prognosis.</p><p><strong>Methods: </strong>We integrated four HNSCC datasets (TCGA-HNSCC, GSE27020, GSE41613, and GSE65858) from TCGA and GEO databases. Using 10 multi-omics consensus clustering algorithms via the MOVICS package, we identified two molecular subtypes (CS1 and CS2) and validated their stability. A machine learning-driven prognostic signature was constructed by combining 101 algorithms, ultimately selecting 30 prognosis-related genes (PRGs) with the Elastic Net model. This signature was further linked to immune infiltration, functional pathways, and therapeutic sensitivity.</p><p><strong>Results: </strong>CS1 exhibited superior survival outcomes in both TCGA and META-HNSCC cohorts. The PRG-based signature stratified patients into low- and high-risk groups, with the low-risk group showing prolonged survival, enhanced immune cell infiltration (B cells, T cells, monocytes), and activated immune functions (cytolytic activity, T cell co-stimulation). High-risk patients were more sensitive to radiotherapy and chemotherapy (e.g., Cisplatin, 5-Fluorouracil), while low-risk patients responded better to immunotherapy and targeted therapies.</p><p><strong>Conclusion: </strong>Our study delineates two molecular subtypes of HNSCC and establishes a robust prognostic model using multi-omics data and machine learning. These findings provide a framework for personalized treatment selection, offering clinical insights to optimize therapeutic strategies for HNSCC patients.</p>","PeriodicalId":12862,"journal":{"name":"Hereditas","volume":"162 1","pages":"17"},"PeriodicalIF":2.7000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11800565/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Hereditas","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s41065-025-00380-0","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Immunotherapy has introduced new breakthroughs in improving the survival of head and neck squamous cell carcinoma (HNSCC) patients, yet drug resistance remains a critical challenge. Developing personalized treatment strategies based on the molecular heterogeneity of HNSCC is essential to enhance therapeutic efficacy and prognosis.
Methods: We integrated four HNSCC datasets (TCGA-HNSCC, GSE27020, GSE41613, and GSE65858) from TCGA and GEO databases. Using 10 multi-omics consensus clustering algorithms via the MOVICS package, we identified two molecular subtypes (CS1 and CS2) and validated their stability. A machine learning-driven prognostic signature was constructed by combining 101 algorithms, ultimately selecting 30 prognosis-related genes (PRGs) with the Elastic Net model. This signature was further linked to immune infiltration, functional pathways, and therapeutic sensitivity.
Results: CS1 exhibited superior survival outcomes in both TCGA and META-HNSCC cohorts. The PRG-based signature stratified patients into low- and high-risk groups, with the low-risk group showing prolonged survival, enhanced immune cell infiltration (B cells, T cells, monocytes), and activated immune functions (cytolytic activity, T cell co-stimulation). High-risk patients were more sensitive to radiotherapy and chemotherapy (e.g., Cisplatin, 5-Fluorouracil), while low-risk patients responded better to immunotherapy and targeted therapies.
Conclusion: Our study delineates two molecular subtypes of HNSCC and establishes a robust prognostic model using multi-omics data and machine learning. These findings provide a framework for personalized treatment selection, offering clinical insights to optimize therapeutic strategies for HNSCC patients.
HereditasBiochemistry, Genetics and Molecular Biology-Genetics
CiteScore
3.80
自引率
3.70%
发文量
0
期刊介绍:
For almost a century, Hereditas has published original cutting-edge research and reviews. As the Official journal of the Mendelian Society of Lund, the journal welcomes research from across all areas of genetics and genomics. Topics of interest include human and medical genetics, animal and plant genetics, microbial genetics, agriculture and bioinformatics.