Oxidative Stress in Kidney of Zebrafish due to Individual and Combined Exposure to Amoxicillin, Arsenic, and Fluoride: Involving Nrf2-Keap1-ARE Pathway.

IF 2.7 4区 医学 Q3 TOXICOLOGY Journal of Applied Toxicology Pub Date : 2025-02-05 DOI:10.1002/jat.4763
Sunanda Mukherjee, Shehnaz Islam, Olivia Sarkar, Ansuman Chattopadhyay
{"title":"Oxidative Stress in Kidney of Zebrafish due to Individual and Combined Exposure to Amoxicillin, Arsenic, and Fluoride: Involving Nrf2-Keap1-ARE Pathway.","authors":"Sunanda Mukherjee, Shehnaz Islam, Olivia Sarkar, Ansuman Chattopadhyay","doi":"10.1002/jat.4763","DOIUrl":null,"url":null,"abstract":"<p><p>Toxic manifestations of different antibiotics and metal compounds have been studied comprehensively in the last decades; however, their co-toxicity on aquatic organisms is poorly investigated. This study aimed to evaluate the oxidative stress imposed on zebrafish kidney tissue when exposed to amoxicillin (AMX, 10 μg/L) alone or in combination with 50 μg/L of As<sub>2</sub>O<sub>3</sub> (equivalent to 37.87 μg/L of As) and/or 15 mg/L of NaF (equivalent to 6.8 mg/L of F) for 15 days. We observed increased levels of cellular ROS, MDA, and GSH along with increased activity of CAT enzyme in all the treated groups. Disrupted histoarchitecture, including degeneration of tubular cells, vacuolation, and necrotic spots, was indicative of oxidative damage. mRNA expression of stress responsive genes like nrf2, gpx1, hsp70, keap1, nqo1, cat, and ho1 corroborated the data. Translocation of Nrf2 from cytoplasm to nucleus and its subsequent expression was higher for all the treated groups. Moreover, the mixture effects of AMX + As + F were more severe than the other combinations, while unique exposure with AMX had minimum effects. Highlighting the involvement of the Nrf2-Keap1-ARE pathway, these findings make us aware of the synergistic response of AMX, As, and F in the ecosystem, putting forward a great threat to humankind.</p>","PeriodicalId":15242,"journal":{"name":"Journal of Applied Toxicology","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Toxicology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1002/jat.4763","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"TOXICOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Toxic manifestations of different antibiotics and metal compounds have been studied comprehensively in the last decades; however, their co-toxicity on aquatic organisms is poorly investigated. This study aimed to evaluate the oxidative stress imposed on zebrafish kidney tissue when exposed to amoxicillin (AMX, 10 μg/L) alone or in combination with 50 μg/L of As2O3 (equivalent to 37.87 μg/L of As) and/or 15 mg/L of NaF (equivalent to 6.8 mg/L of F) for 15 days. We observed increased levels of cellular ROS, MDA, and GSH along with increased activity of CAT enzyme in all the treated groups. Disrupted histoarchitecture, including degeneration of tubular cells, vacuolation, and necrotic spots, was indicative of oxidative damage. mRNA expression of stress responsive genes like nrf2, gpx1, hsp70, keap1, nqo1, cat, and ho1 corroborated the data. Translocation of Nrf2 from cytoplasm to nucleus and its subsequent expression was higher for all the treated groups. Moreover, the mixture effects of AMX + As + F were more severe than the other combinations, while unique exposure with AMX had minimum effects. Highlighting the involvement of the Nrf2-Keap1-ARE pathway, these findings make us aware of the synergistic response of AMX, As, and F in the ecosystem, putting forward a great threat to humankind.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.00
自引率
6.10%
发文量
145
审稿时长
1 months
期刊介绍: Journal of Applied Toxicology publishes peer-reviewed original reviews and hypothesis-driven research articles on mechanistic, fundamental and applied research relating to the toxicity of drugs and chemicals at the molecular, cellular, tissue, target organ and whole body level in vivo (by all relevant routes of exposure) and in vitro / ex vivo. All aspects of toxicology are covered (including but not limited to nanotoxicology, genomics and proteomics, teratogenesis, carcinogenesis, mutagenesis, reproductive and endocrine toxicology, toxicopathology, target organ toxicity, systems toxicity (eg immunotoxicity), neurobehavioral toxicology, mechanistic studies, biochemical and molecular toxicology, novel biomarkers, pharmacokinetics/PBPK, risk assessment and environmental health studies) and emphasis is given to papers of clear application to human health, and/or advance mechanistic understanding and/or provide significant contributions and impact to their field.
期刊最新文献
Issue Information The Development of Yellow Mealworm (Tenebrio molitor) as a Cheap and Simple Model to Evaluate Acute Toxicity, Locomotor Activity Changes, and Metabolite Profile Alterations Induced by Nanoplastics of Different Sizes. Toll-Like Receptors in Pentachlorophenol- and Dibutyltin-Induced Production of Pro-Inflammatory Cytokines, Interleukin (IL)-1β, and IL-6, by Human Immune Cells. Oxidative Stress in Kidney of Zebrafish due to Individual and Combined Exposure to Amoxicillin, Arsenic, and Fluoride: Involving Nrf2-Keap1-ARE Pathway. Effects of Non-Feeding on Development in a Teleost, Minami-Medaka, Oryzias latipes: Identification of Eleutheroembryonic Stage for Potential Alternative Regulatory Toxicology Tests Along the 3R Principles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1