Hydrophobic vehicles for hydrophilic drugs: Sustained intravitreal caffeine delivery with oleogels

IF 10.5 1区 医学 Q1 CHEMISTRY, MULTIDISCIPLINARY Journal of Controlled Release Pub Date : 2025-02-11 DOI:10.1016/j.jconrel.2025.02.004
Nan Jiang , Wei Guo , Si-yu Wang , Xin-xin Liu , Yu-qing Yin , Ke-xin Xiong , Xiang-yu Li , Cheng Liu , Kai-hui Nan , Jiang-fan Chen , Jing-jie Wang
{"title":"Hydrophobic vehicles for hydrophilic drugs: Sustained intravitreal caffeine delivery with oleogels","authors":"Nan Jiang ,&nbsp;Wei Guo ,&nbsp;Si-yu Wang ,&nbsp;Xin-xin Liu ,&nbsp;Yu-qing Yin ,&nbsp;Ke-xin Xiong ,&nbsp;Xiang-yu Li ,&nbsp;Cheng Liu ,&nbsp;Kai-hui Nan ,&nbsp;Jiang-fan Chen ,&nbsp;Jing-jie Wang","doi":"10.1016/j.jconrel.2025.02.004","DOIUrl":null,"url":null,"abstract":"<div><div>Caffeine is the most widely consumed bioactive ingredient in the world, which has been found to show great therapeutic potential in several posterior eye diseases. While intravitreal injection represents the ideal administration route for these disorders, it remains challenging to achieve sustained release of caffeine in the vitreous. Herein, we address this issue by loading crystalline caffeine within oleogels (Ca@oleogels), oily delivery vehicles which provide a hydrophobic environment that is opposite to the hydrophilic nature of their cargos. Mathematical modeling of the <em>in vitro</em> release profiles indicated the diffusion process of the drug from Ca@oleogels was playing a dominating role in caffeine release. Furthermore, sustained intravitreal delivery was evidenced by higher drug levels from 12 h until the end of the pharmacokinetic study (240 h) and a 3.2-fold reduction in C<sub>max</sub> in Ca@oleogel dosed rabbits compared to their caffeine dosed counterparts. Superior therapeutic effects were obtained with Ca@oleogels in a laser-induced mouse choroidal neovascularization model. Advantages of Ca@oleogels as caffeine delivery vehicles included excellent biocompatibility, low cost and simplicity of manufacturing as well, which indicated they can be administrated safely and were readily amenable to scale-up production cost-effectively. Moreover, sustained release of another hydrophilic model drug (congo red) was also demonstrated with the same formulation design. Therefore, this strategy serves as a general solution to sustained intravitreal delivery of hydrophilic small molecule drugs.</div></div>","PeriodicalId":15450,"journal":{"name":"Journal of Controlled Release","volume":"380 ","pages":"Pages 490-502"},"PeriodicalIF":10.5000,"publicationDate":"2025-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Controlled Release","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0168365925001099","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Caffeine is the most widely consumed bioactive ingredient in the world, which has been found to show great therapeutic potential in several posterior eye diseases. While intravitreal injection represents the ideal administration route for these disorders, it remains challenging to achieve sustained release of caffeine in the vitreous. Herein, we address this issue by loading crystalline caffeine within oleogels (Ca@oleogels), oily delivery vehicles which provide a hydrophobic environment that is opposite to the hydrophilic nature of their cargos. Mathematical modeling of the in vitro release profiles indicated the diffusion process of the drug from Ca@oleogels was playing a dominating role in caffeine release. Furthermore, sustained intravitreal delivery was evidenced by higher drug levels from 12 h until the end of the pharmacokinetic study (240 h) and a 3.2-fold reduction in Cmax in Ca@oleogel dosed rabbits compared to their caffeine dosed counterparts. Superior therapeutic effects were obtained with Ca@oleogels in a laser-induced mouse choroidal neovascularization model. Advantages of Ca@oleogels as caffeine delivery vehicles included excellent biocompatibility, low cost and simplicity of manufacturing as well, which indicated they can be administrated safely and were readily amenable to scale-up production cost-effectively. Moreover, sustained release of another hydrophilic model drug (congo red) was also demonstrated with the same formulation design. Therefore, this strategy serves as a general solution to sustained intravitreal delivery of hydrophilic small molecule drugs.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Controlled Release
Journal of Controlled Release 医学-化学综合
CiteScore
18.50
自引率
5.60%
发文量
700
审稿时长
39 days
期刊介绍: The Journal of Controlled Release (JCR) proudly serves as the Official Journal of the Controlled Release Society and the Japan Society of Drug Delivery System. Dedicated to the broad field of delivery science and technology, JCR publishes high-quality research articles covering drug delivery systems and all facets of formulations. This includes the physicochemical and biological properties of drugs, design and characterization of dosage forms, release mechanisms, in vivo testing, and formulation research and development across pharmaceutical, diagnostic, agricultural, environmental, cosmetic, and food industries. Priority is given to manuscripts that contribute to the fundamental understanding of principles or demonstrate the advantages of novel technologies in terms of safety and efficacy over current clinical standards. JCR strives to be a leading platform for advancements in delivery science and technology.
期刊最新文献
A rapamycin-loading platelet membrane hybrid liposome with anti-inflammation effect and long-lasting repair capability for acute kidney injury Nanoparticles encapsulating antigenic peptides induce tolerogenic dendritic cells in situ for treating systemic lupus erythematosus Inflammasome mediated in situ cancer vaccine activated by schottky heterojunction for augmented immunotherapy Corrigendum to “Size-specific clonidine-loaded liposomes: Advancing melanoma microenvironment suppression with safety and precision” [Journal of Controlled Release, Volume 379, 10 March 2025, Pages 120–134] Sustained release of a novel non-fibrate PPARα agonist from microparticles for neuroprotection in murine models of age-related macular degeneration
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1