Jordi Pujols, Marc Fornt, Marcos Gil-García, Andrea Bartolomé-Nafría, Francesc Canals, Linda Cerofolini, Kaare Teilum, Lucia Banci, Sebastián A Esperante, Salvador Ventura
{"title":"MIA40 circumvents the folding constraints imposed by TRIAP1 function.","authors":"Jordi Pujols, Marc Fornt, Marcos Gil-García, Andrea Bartolomé-Nafría, Francesc Canals, Linda Cerofolini, Kaare Teilum, Lucia Banci, Sebastián A Esperante, Salvador Ventura","doi":"10.1016/j.jbc.2025.108268","DOIUrl":null,"url":null,"abstract":"<p><p>The MIA40 relay system mediates the import of small cysteine-rich proteins into the intermembrane mitochondrial space (IMS). MIA40 substrates are synthesized in the cytosol and assumed to be disordered in their reduced state in this compartment. As they cross the outer mitochondrial membrane, MIA40 promotes the oxidation of critical native disulfides to facilitate folding, trapping functional species in the IMS. Here, we study the redox-controlled folding of TRIAP1, a small cysteine-rich protein with moonlighting function: regulating phospholipid trafficking between mitochondrial membranes in the IMS and preventing apoptosis in the cytosol. TRIAP1 dysregulation is connected to oncogenesis. Although TRIAP1 contains a canonical twin CX9C motif, its sequence characteristics and folding pathway deviate from typical MIA40 substrates. In its reduced state, TRIAP1 rapidly populates a hydrophobic collapsed, alpha-helical, and marginally stable molten globule. This intermediate, biases oxidative folding towards a non-native Cys37-Cys47 kinetic trap, slowing the reaction. MIA40 accelerates TRIAP1 folding rate by 30-fold, bypassing the formation of this folding trap. MIA40 drives the oxidation of the inner disulfide bond Cys18-Cys37, and subsequently, it can catalyze the formation of the outer disulfide bond Cys8-Cys47 to attain the native two-disulfide-bridged structure. We demonstrate that, unlike most MIA40 substrates, TRIAP1's folding pathway is strongly constrained by the structural requirements for its function in phospholipid traffic at the IMS. The obligatory population of a reduced, alpha-helical, metastable molten globule in the cytoplasm may explain TRIAP1's connection to the p53-dependent cell survival pathway, constituting a remarkable example of a functional molten globule state.</p>","PeriodicalId":15140,"journal":{"name":"Journal of Biological Chemistry","volume":" ","pages":"108268"},"PeriodicalIF":4.0000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Biological Chemistry","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.jbc.2025.108268","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The MIA40 relay system mediates the import of small cysteine-rich proteins into the intermembrane mitochondrial space (IMS). MIA40 substrates are synthesized in the cytosol and assumed to be disordered in their reduced state in this compartment. As they cross the outer mitochondrial membrane, MIA40 promotes the oxidation of critical native disulfides to facilitate folding, trapping functional species in the IMS. Here, we study the redox-controlled folding of TRIAP1, a small cysteine-rich protein with moonlighting function: regulating phospholipid trafficking between mitochondrial membranes in the IMS and preventing apoptosis in the cytosol. TRIAP1 dysregulation is connected to oncogenesis. Although TRIAP1 contains a canonical twin CX9C motif, its sequence characteristics and folding pathway deviate from typical MIA40 substrates. In its reduced state, TRIAP1 rapidly populates a hydrophobic collapsed, alpha-helical, and marginally stable molten globule. This intermediate, biases oxidative folding towards a non-native Cys37-Cys47 kinetic trap, slowing the reaction. MIA40 accelerates TRIAP1 folding rate by 30-fold, bypassing the formation of this folding trap. MIA40 drives the oxidation of the inner disulfide bond Cys18-Cys37, and subsequently, it can catalyze the formation of the outer disulfide bond Cys8-Cys47 to attain the native two-disulfide-bridged structure. We demonstrate that, unlike most MIA40 substrates, TRIAP1's folding pathway is strongly constrained by the structural requirements for its function in phospholipid traffic at the IMS. The obligatory population of a reduced, alpha-helical, metastable molten globule in the cytoplasm may explain TRIAP1's connection to the p53-dependent cell survival pathway, constituting a remarkable example of a functional molten globule state.
期刊介绍:
The Journal of Biological Chemistry welcomes high-quality science that seeks to elucidate the molecular and cellular basis of biological processes. Papers published in JBC can therefore fall under the umbrellas of not only biological chemistry, chemical biology, or biochemistry, but also allied disciplines such as biophysics, systems biology, RNA biology, immunology, microbiology, neurobiology, epigenetics, computational biology, ’omics, and many more. The outcome of our focus on papers that contribute novel and important mechanistic insights, rather than on a particular topic area, is that JBC is truly a melting pot for scientists across disciplines. In addition, JBC welcomes papers that describe methods that will help scientists push their biochemical inquiries forward and resources that will be of use to the research community.