High energy diet-induced prediabetic neuropathic pain is mediated by reduction of SIRT6 negative control of both spinal and peripheral neuroinflammation

IF 2.9 3区 医学 Q2 NEUROSCIENCES Neuroscience Pub Date : 2025-02-03 DOI:10.1016/j.neuroscience.2025.02.003
Yan Yang , Wei Sun , Fan Yang , Ting Liang , Chun-Li Li , Yan Wang , Xiao-Liang Wang , Rui-Rui Wang , Shuang-Chan Wu , Jun Chen
{"title":"High energy diet-induced prediabetic neuropathic pain is mediated by reduction of SIRT6 negative control of both spinal and peripheral neuroinflammation","authors":"Yan Yang ,&nbsp;Wei Sun ,&nbsp;Fan Yang ,&nbsp;Ting Liang ,&nbsp;Chun-Li Li ,&nbsp;Yan Wang ,&nbsp;Xiao-Liang Wang ,&nbsp;Rui-Rui Wang ,&nbsp;Shuang-Chan Wu ,&nbsp;Jun Chen","doi":"10.1016/j.neuroscience.2025.02.003","DOIUrl":null,"url":null,"abstract":"<div><div>Prediabetic neuropathic pain has been classified as peripheral neuropathic pain associated with polyneuropathy caused by impaired glucose tolerance or impaired fasting glucose, which is a preclinical stage and might develop type 2 diabetes mellitus. Our previous research highlighted that prediabetes is accompanied by dramatic bilateral mechanical hyperalgesia following high energy diet (HED) which results in myelin and axonal degenerations along somatosensory system. However, the pathogenic mechanisms underlying prediabetic neuropathic pain remain unclear. The nuclear sirtuin 6 (SIRT6) is a crucial deacetylase in the regulation of multiple cellular biological processes, such as DNA repair, genome stability, inflammation and metabolic homeostasis. In current study, we show that the expressions of SIRT6 were significantly decreased, while its downstream NF-κB and proinflammatory mediator IL-6 and IL-1β were significantly increased in both dorsal root ganglia (DRG) and spinal dorsal horn of rats with prediabetic neuropathic pain induced by HED. Moreover, siRNA-SIRT6 treatment induced a significant reduction in bilateral paw withdrawal mechanical thresholds, indicating that SIRT6 down-regulation contributed to prediabetic neuropathic pain induced by HED. Furthermore, it was also found that SIRT6 reduction induced the activation of HMGB1 via disinhibition of NF-κB in both DRG and spinal dorsal horn of prediabetic rats. In conclusion, prediabetic neuropathic pain is caused by SIRT6 reduction through upregulating HMGB1-RAGE signaling at both peripheral and spinal levels.</div></div>","PeriodicalId":19142,"journal":{"name":"Neuroscience","volume":"569 ","pages":"Pages 58-66"},"PeriodicalIF":2.9000,"publicationDate":"2025-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0306452225000867","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Prediabetic neuropathic pain has been classified as peripheral neuropathic pain associated with polyneuropathy caused by impaired glucose tolerance or impaired fasting glucose, which is a preclinical stage and might develop type 2 diabetes mellitus. Our previous research highlighted that prediabetes is accompanied by dramatic bilateral mechanical hyperalgesia following high energy diet (HED) which results in myelin and axonal degenerations along somatosensory system. However, the pathogenic mechanisms underlying prediabetic neuropathic pain remain unclear. The nuclear sirtuin 6 (SIRT6) is a crucial deacetylase in the regulation of multiple cellular biological processes, such as DNA repair, genome stability, inflammation and metabolic homeostasis. In current study, we show that the expressions of SIRT6 were significantly decreased, while its downstream NF-κB and proinflammatory mediator IL-6 and IL-1β were significantly increased in both dorsal root ganglia (DRG) and spinal dorsal horn of rats with prediabetic neuropathic pain induced by HED. Moreover, siRNA-SIRT6 treatment induced a significant reduction in bilateral paw withdrawal mechanical thresholds, indicating that SIRT6 down-regulation contributed to prediabetic neuropathic pain induced by HED. Furthermore, it was also found that SIRT6 reduction induced the activation of HMGB1 via disinhibition of NF-κB in both DRG and spinal dorsal horn of prediabetic rats. In conclusion, prediabetic neuropathic pain is caused by SIRT6 reduction through upregulating HMGB1-RAGE signaling at both peripheral and spinal levels.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neuroscience
Neuroscience 医学-神经科学
CiteScore
6.20
自引率
0.00%
发文量
394
审稿时长
52 days
期刊介绍: Neuroscience publishes papers describing the results of original research on any aspect of the scientific study of the nervous system. Any paper, however short, will be considered for publication provided that it reports significant, new and carefully confirmed findings with full experimental details.
期刊最新文献
Editorial Board Editorial Board Tangeretin enhances sedative activity of diazepam in Swiss mice through GABAA receptor interaction: In vivo and in silico approaches Alterations in degree centrality and functional connectivity associated with cognitive Impairment in myotonic dystrophy type 1:A Preliminary functional MRI study. Tips for Quality Publishing; Lessons from the Neuroscience Editorial Team.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1