MicroRNA-219 in the central nervous system: a potential theranostic approach.

IF 2.1 Q3 CHEMISTRY, MEDICINAL Research in Pharmaceutical Sciences Pub Date : 2024-12-15 eCollection Date: 2024-12-01 DOI:10.4103/RPS.RPS_163_23
Nahal Shamaeizadeh, Mina Mirian
{"title":"MicroRNA-219 in the central nervous system: a potential theranostic approach.","authors":"Nahal Shamaeizadeh, Mina Mirian","doi":"10.4103/RPS.RPS_163_23","DOIUrl":null,"url":null,"abstract":"<p><p>Despite the recent therapeutic advances in neurological disorders, curative therapy remains a serious challenge in many cases. Even though recent years have witnessed the development of gene therapy from among the different therapeutic approaches affecting pathophysiological mechanisms, intriguing aspects exist regarding the effectiveness, safety, and mechanism of action of gene therapies. Micro ribonucleic acid (microRNA-miRNA), as a fundamental gene regulator, regulates messenger ribonucleic acid (mRNA) by directly binding through the 3'-untranslated region (3'-UTR). MicroRNA-219 is a specific brain-enriched miRNA associated with neurodevelopmental disorders that play crucial roles in the differentiation of oligodendrocyte progenitorcells, promotion of oligodendrocyte maturation, remyelination, and cognitive functions to the extent that it can be considered a potential therapeutic option for demyelination in multiple sclerosis and spinal cord injury and reverse chronic inflammation pains. Additionally, miR-219 regulates the circadian clock, influencing the duration of the circadian clock period. This regulation can impact mood stability and is associated with phase fluctuations in bipolar patients. Furthermore, miR-219 also plays a role in modulating tau toxicity, which is relevant to the pathophysiology of Alzheimer's disease and schizophrenia. Finally, it reportedly has protective effects against seizures and Parkinson's disease, as well as neoplasms, by inhibiting proliferation, suppressing invasion, and inducing cell death in tumor cells. Exploring the miR-219 molecular pathways and their therapeutic effects on central nervous system disorders and the mechanisms involved, the present review study aims to illustrate how this information may change the future of gene therapy.</p>","PeriodicalId":21075,"journal":{"name":"Research in Pharmaceutical Sciences","volume":"19 6","pages":"634-655"},"PeriodicalIF":2.1000,"publicationDate":"2024-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11792714/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Research in Pharmaceutical Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4103/RPS.RPS_163_23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/12/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Despite the recent therapeutic advances in neurological disorders, curative therapy remains a serious challenge in many cases. Even though recent years have witnessed the development of gene therapy from among the different therapeutic approaches affecting pathophysiological mechanisms, intriguing aspects exist regarding the effectiveness, safety, and mechanism of action of gene therapies. Micro ribonucleic acid (microRNA-miRNA), as a fundamental gene regulator, regulates messenger ribonucleic acid (mRNA) by directly binding through the 3'-untranslated region (3'-UTR). MicroRNA-219 is a specific brain-enriched miRNA associated with neurodevelopmental disorders that play crucial roles in the differentiation of oligodendrocyte progenitorcells, promotion of oligodendrocyte maturation, remyelination, and cognitive functions to the extent that it can be considered a potential therapeutic option for demyelination in multiple sclerosis and spinal cord injury and reverse chronic inflammation pains. Additionally, miR-219 regulates the circadian clock, influencing the duration of the circadian clock period. This regulation can impact mood stability and is associated with phase fluctuations in bipolar patients. Furthermore, miR-219 also plays a role in modulating tau toxicity, which is relevant to the pathophysiology of Alzheimer's disease and schizophrenia. Finally, it reportedly has protective effects against seizures and Parkinson's disease, as well as neoplasms, by inhibiting proliferation, suppressing invasion, and inducing cell death in tumor cells. Exploring the miR-219 molecular pathways and their therapeutic effects on central nervous system disorders and the mechanisms involved, the present review study aims to illustrate how this information may change the future of gene therapy.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Research in Pharmaceutical Sciences
Research in Pharmaceutical Sciences CHEMISTRY, MEDICINAL-
CiteScore
3.60
自引率
19.00%
发文量
50
审稿时长
34 weeks
期刊介绍: Research in Pharmaceutical Sciences (RPS) is included in Thomson Reuters ESCI Web of Science (searchable at WoS master journal list), indexed with PubMed and PubMed Central and abstracted in the Elsevier Bibliographic Databases. Databases include Scopus, EMBASE, EMCare, EMBiology and Elsevier BIOBASE. It is also indexed in several specialized databases including Scientific Information Database (SID), Google Scholar, Iran Medex, Magiran, Index Copernicus (IC) and Islamic World Science Citation Center (ISC).
期刊最新文献
Ultra-small phospholipid nanoparticles in the treatment of combined hyperlipidemia: a randomized placebo-controlled clinical trial. In vitro and in vivo evaluation of anti-inflammatory activities of ethanol extract from Lom-Am-Ma-Pruek remedy for pain relief. Antiaging properties of chlorogenic acid through protein and gene biomarkers in human skin fibroblast cells as photoaging model. Enhancement effect of urea toward electroporation-mediated plasmid transfection efficiency in the HEK-293 cell line. Exploring the inhibitory potential of xanthohumol on MEK1/2: a molecular docking and dynamics simulation investigation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1