An enhanced rainfall-induced landslide catalogue in Italy.

IF 5.8 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Scientific Data Pub Date : 2025-02-05 DOI:10.1038/s41597-025-04551-6
Maria Teresa Brunetti, Stefano Luigi Gariano, Massimo Melillo, Mauro Rossi, Silvia Peruccacci
{"title":"An enhanced rainfall-induced landslide catalogue in Italy.","authors":"Maria Teresa Brunetti, Stefano Luigi Gariano, Massimo Melillo, Mauro Rossi, Silvia Peruccacci","doi":"10.1038/s41597-025-04551-6","DOIUrl":null,"url":null,"abstract":"<p><p>With the increasing use of data-driven landslide prediction models also based on artificial intelligence, the availability of accurate information on the occurrence of landslides and the rigorous reconstruction of their triggering rainfall conditions are crucial. To this end, an enhanced rainfall-induced landslide catalogue, e-ITALICA, is presented here. e-ITALICA contains spatial and temporal information on 6312 rainfall-induced landslides that occurred in Italy between 1996 and 2021 (already listed in the previous ITALICA catalogue published in 2023), with the addition of their rainfall triggering conditions in terms of rainfall duration D (h) and cumulative event rainfall E (mm). The triggering conditions are calculated using hourly rainfall measurements from 4033 rain gauges and applying a rigorous and reproducible method. In addition, topographic and land cover information is also provided. e-ITALICA can be used to analyse rainfall conditions capable of triggering landslides, to calibrate and validate physically based landslide prediction models, and to define empirical rainfall thresholds from local to national scales in Italy, thus contributing to landslide risk reduction.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"216"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11799417/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-04551-6","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

With the increasing use of data-driven landslide prediction models also based on artificial intelligence, the availability of accurate information on the occurrence of landslides and the rigorous reconstruction of their triggering rainfall conditions are crucial. To this end, an enhanced rainfall-induced landslide catalogue, e-ITALICA, is presented here. e-ITALICA contains spatial and temporal information on 6312 rainfall-induced landslides that occurred in Italy between 1996 and 2021 (already listed in the previous ITALICA catalogue published in 2023), with the addition of their rainfall triggering conditions in terms of rainfall duration D (h) and cumulative event rainfall E (mm). The triggering conditions are calculated using hourly rainfall measurements from 4033 rain gauges and applying a rigorous and reproducible method. In addition, topographic and land cover information is also provided. e-ITALICA can be used to analyse rainfall conditions capable of triggering landslides, to calibrate and validate physically based landslide prediction models, and to define empirical rainfall thresholds from local to national scales in Italy, thus contributing to landslide risk reduction.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
期刊最新文献
Chromosome-level genome assembly for the ecologically and economically important alga Saccharina japonica. Chromosome-level genome assembly of Phytoseiulus persimilis Athias-Henriot. Compilation of riverine water quality data from the Great Barrier Reef catchment area, northeastern Australia. A Database of Underwater Radiated Noise from Small Vessels in the Coastal Area. Author Correction: Drone-Person Tracking in Uniform Appearance Crowd: A New Dataset.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1