{"title":"HCNetlas: A reference database of human cell type-specific gene networks to aid disease genetic analyses.","authors":"Jiwon Yu, Junha Cha, Geon Koh, Insuk Lee","doi":"10.1371/journal.pbio.3002702","DOIUrl":null,"url":null,"abstract":"<p><p>Cell type-specific actions of disease genes add a significant layer of complexity to the genetic architecture underlying diseases, obscuring our understanding of disease mechanisms. Single-cell omics have revealed the functional roles of genes at the cellular level, identifying cell types critical for disease progression. Often, a gene impact on disease through its altered network within specific cell types, rather than mere changes in expression levels. To explore the cell type-specific roles of disease genes, we developed HCNetlas (human cell network atlas), a resource cataloging cell type-specific gene networks (CGNs) for various healthy tissue cells. We also devised 3 network analysis methods to investigate cell type-specific functions of disease genes. These methods involve comparing HCNetlas CGNs with those derived from disease-affected tissue samples. These methods find that systemic lupus erythematosus genes predominantly function in myeloid cells, and Alzheimer's disease genes mainly play roles in inhibitory and excitatory neurons. Additionally, they suggest that many lung cancer-related genes may exert their roles in immune cells. These findings suggest that HCNetlas has the potential to link disease-associated genes to cell types of action, facilitating development of cell type-resolved diagnostics and therapeutic strategies for complex human diseases.</p>","PeriodicalId":49001,"journal":{"name":"PLoS Biology","volume":"23 2","pages":"e3002702"},"PeriodicalIF":9.8000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11798474/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pbio.3002702","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"Agricultural and Biological Sciences","Score":null,"Total":0}
引用次数: 0
Abstract
Cell type-specific actions of disease genes add a significant layer of complexity to the genetic architecture underlying diseases, obscuring our understanding of disease mechanisms. Single-cell omics have revealed the functional roles of genes at the cellular level, identifying cell types critical for disease progression. Often, a gene impact on disease through its altered network within specific cell types, rather than mere changes in expression levels. To explore the cell type-specific roles of disease genes, we developed HCNetlas (human cell network atlas), a resource cataloging cell type-specific gene networks (CGNs) for various healthy tissue cells. We also devised 3 network analysis methods to investigate cell type-specific functions of disease genes. These methods involve comparing HCNetlas CGNs with those derived from disease-affected tissue samples. These methods find that systemic lupus erythematosus genes predominantly function in myeloid cells, and Alzheimer's disease genes mainly play roles in inhibitory and excitatory neurons. Additionally, they suggest that many lung cancer-related genes may exert their roles in immune cells. These findings suggest that HCNetlas has the potential to link disease-associated genes to cell types of action, facilitating development of cell type-resolved diagnostics and therapeutic strategies for complex human diseases.
期刊介绍:
PLOS Biology is the flagship journal of the Public Library of Science (PLOS) and focuses on publishing groundbreaking and relevant research in all areas of biological science. The journal features works at various scales, ranging from molecules to ecosystems, and also encourages interdisciplinary studies. PLOS Biology publishes articles that demonstrate exceptional significance, originality, and relevance, with a high standard of scientific rigor in methodology, reporting, and conclusions.
The journal aims to advance science and serve the research community by transforming research communication to align with the research process. It offers evolving article types and policies that empower authors to share the complete story behind their scientific findings with a diverse global audience of researchers, educators, policymakers, patient advocacy groups, and the general public.
PLOS Biology, along with other PLOS journals, is widely indexed by major services such as Crossref, Dimensions, DOAJ, Google Scholar, PubMed, PubMed Central, Scopus, and Web of Science. Additionally, PLOS Biology is indexed by various other services including AGRICOLA, Biological Abstracts, BIOSYS Previews, CABI CAB Abstracts, CABI Global Health, CAPES, CAS, CNKI, Embase, Journal Guide, MEDLINE, and Zoological Record, ensuring that the research content is easily accessible and discoverable by a wide range of audiences.