Anti-Markovnikov hydroallylation reaction of alkenes via scandium-catalyzed allylic C‒H activation

IF 14.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES Nature Communications Pub Date : 2025-02-07 DOI:10.1038/s41467-025-56602-6
Shiyu Wang, Lichao Ning, Tao Mao, Yuqiao Zhou, Maoping Pu, Xiaoming Feng, Shunxi Dong
{"title":"Anti-Markovnikov hydroallylation reaction of alkenes via scandium-catalyzed allylic C‒H activation","authors":"Shiyu Wang, Lichao Ning, Tao Mao, Yuqiao Zhou, Maoping Pu, Xiaoming Feng, Shunxi Dong","doi":"10.1038/s41467-025-56602-6","DOIUrl":null,"url":null,"abstract":"<p>Compared with rare-earth (RE)…heteroatom interaction, RE…π interaction, frequently used in facilitating regio- and stereoselectivity of olefin polymerizations, is seldomly used to trigger catalytic C − H functionalization. Here, we describe a direct anti-Markovnikov hydroallylation reaction of styrene derivatives with 1-aryl-2-alkyl alkenes and α-alkenes by use of RE…π interaction. This protocol provides a straightforward and atom-efficient route for the synthesis of valuable chain elongated internal alkenes (65 examples, up to 99% yield, &gt; 19:1 E/Z ratio). The reaction proceeds via an allylic Csp<sup>3</sup>‒H activation pathway initiated by site-selective deprotonation with the assistance of cationic imidazolin-2-iminato scandium alkyl species followed by alkene insertion into the resulting scandium-allyl bond. A catalytic amount of Lewis base additives, such as amine and tetrahydrofuran (THF) show significant effects on the reactivity and E/Z selectivity. The reaction mechanism is elucidated by experimental studies and theoretical calculations.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"50 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56602-6","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Compared with rare-earth (RE)…heteroatom interaction, RE…π interaction, frequently used in facilitating regio- and stereoselectivity of olefin polymerizations, is seldomly used to trigger catalytic C − H functionalization. Here, we describe a direct anti-Markovnikov hydroallylation reaction of styrene derivatives with 1-aryl-2-alkyl alkenes and α-alkenes by use of RE…π interaction. This protocol provides a straightforward and atom-efficient route for the synthesis of valuable chain elongated internal alkenes (65 examples, up to 99% yield, > 19:1 E/Z ratio). The reaction proceeds via an allylic Csp3‒H activation pathway initiated by site-selective deprotonation with the assistance of cationic imidazolin-2-iminato scandium alkyl species followed by alkene insertion into the resulting scandium-allyl bond. A catalytic amount of Lewis base additives, such as amine and tetrahydrofuran (THF) show significant effects on the reactivity and E/Z selectivity. The reaction mechanism is elucidated by experimental studies and theoretical calculations.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
期刊最新文献
Author Correction: Seasonal recurrence and modular assembly of an Arctic pelagic marine microbiome Reply to: Should we be careful with exercise in post-exertional malaise after Long COVID? A humanized NOVA1 splicing factor alters mouse vocal communications Strong and early monkeypox virus-specific immunity associated with mild disease after intradermal clade-IIb-infection in CAST/EiJ-mice Should we be careful with exercise in post-exertional malaise after long COVID?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1