Novel Indoleamine-2,3-Dioxygenase-Targeted Pt(IV) Prodrugs Regulate the Tumor Immune Microenvironment to Achieve Chemoimmunotherapy In Vitro and In Vivo

IF 6.8 1区 医学 Q1 CHEMISTRY, MEDICINAL Journal of Medicinal Chemistry Pub Date : 2025-02-07 DOI:10.1021/acs.jmedchem.4c02116
Zhe Li, Xiao-Meng Liu, Fei Tan, Jia-Qian Wang, Xin Qiao, Yu-Kuan Feng, Jing-Yuan Xu, Ji-Hui Hao
{"title":"Novel Indoleamine-2,3-Dioxygenase-Targeted Pt(IV) Prodrugs Regulate the Tumor Immune Microenvironment to Achieve Chemoimmunotherapy In Vitro and In Vivo","authors":"Zhe Li, Xiao-Meng Liu, Fei Tan, Jia-Qian Wang, Xin Qiao, Yu-Kuan Feng, Jing-Yuan Xu, Ji-Hui Hao","doi":"10.1021/acs.jmedchem.4c02116","DOIUrl":null,"url":null,"abstract":"Convincing evidence revealed that some platinum-based drugs could stimulate immunological recognition, thereby inducing immunogenic cell death (ICD). Indoleamine-2,3-dioxygenase (IDO) is overexpressed in tumors, which caused exhaustion of tryptophan (T-cell energy) and constructed an immunosuppressive tumor microenvironment. Herein, considering IDO inhibition to improve chemotherapy, a series of IDOi-Pt(IV) prodrugs were designed to not only target DNA and IDO but also facilitate tumor-antigen exposure and immunomodulation. The optimal IDOi-Pt(IV) prodrugs (named compound <b>10</b>) significantly enhanced intracellular accumulation 22.4-fold and cytotoxicity 61.75-fold superior to cisplatin in HeLa cells. Moreover, immunofluorescence and enzyme-linked immunosorbent assays revealed that <b>10</b> induced reactive oxygen species-mediated endoplasmic reticulum stress and secretion of damage-associated molecular patterns, thereby presenting ICD effects. Molecular docking, enzyme inhibition, and Western blot assays demonstrated that <b>10</b> could effectively inhibit IDO1 and reverse immunosuppression, as further verified by mixed leukocyte reactions. <i>In vivo</i> tests showed that <b>10</b> exhibited high-efficiency and low-toxicity antitumor effects compared to cisplatin, presenting successful chemoimmunotherapy.","PeriodicalId":46,"journal":{"name":"Journal of Medicinal Chemistry","volume":"207 1","pages":""},"PeriodicalIF":6.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1021/acs.jmedchem.4c02116","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Convincing evidence revealed that some platinum-based drugs could stimulate immunological recognition, thereby inducing immunogenic cell death (ICD). Indoleamine-2,3-dioxygenase (IDO) is overexpressed in tumors, which caused exhaustion of tryptophan (T-cell energy) and constructed an immunosuppressive tumor microenvironment. Herein, considering IDO inhibition to improve chemotherapy, a series of IDOi-Pt(IV) prodrugs were designed to not only target DNA and IDO but also facilitate tumor-antigen exposure and immunomodulation. The optimal IDOi-Pt(IV) prodrugs (named compound 10) significantly enhanced intracellular accumulation 22.4-fold and cytotoxicity 61.75-fold superior to cisplatin in HeLa cells. Moreover, immunofluorescence and enzyme-linked immunosorbent assays revealed that 10 induced reactive oxygen species-mediated endoplasmic reticulum stress and secretion of damage-associated molecular patterns, thereby presenting ICD effects. Molecular docking, enzyme inhibition, and Western blot assays demonstrated that 10 could effectively inhibit IDO1 and reverse immunosuppression, as further verified by mixed leukocyte reactions. In vivo tests showed that 10 exhibited high-efficiency and low-toxicity antitumor effects compared to cisplatin, presenting successful chemoimmunotherapy.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Medicinal Chemistry
Journal of Medicinal Chemistry 医学-医药化学
CiteScore
4.00
自引率
11.00%
发文量
804
审稿时长
1.9 months
期刊介绍: The Journal of Medicinal Chemistry is a prestigious biweekly peer-reviewed publication that focuses on the multifaceted field of medicinal chemistry. Since its inception in 1959 as the Journal of Medicinal and Pharmaceutical Chemistry, it has evolved to become a cornerstone in the dissemination of research findings related to the design, synthesis, and development of therapeutic agents. The Journal of Medicinal Chemistry is recognized for its significant impact in the scientific community, as evidenced by its 2022 impact factor of 7.3. This metric reflects the journal's influence and the importance of its content in shaping the future of drug discovery and development. The journal serves as a vital resource for chemists, pharmacologists, and other researchers interested in the molecular mechanisms of drug action and the optimization of therapeutic compounds.
期刊最新文献
Novel Indoleamine-2,3-Dioxygenase-Targeted Pt(IV) Prodrugs Regulate the Tumor Immune Microenvironment to Achieve Chemoimmunotherapy In Vitro and In Vivo Discovery of New Nanomolar Selective IRAP Inhibitors Development of ASGR-Mediated Hepatocyte-Targeting Cytotoxic Drug Conjugates with CTSB-Cleavable Linkers Incorporating Succinimide and Succinic Acid Monoamide Property-Based Design of Xanthine Derivatives as Potent and Orally Available TRPC4/5 Inhibitors for Depression and Anxiety Fe(II)-Photoantibiotics for Potential Antibacterial, Antibiofilm, and Infective Wound Healing Applications in Rat Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1