Limits of Learning Dynamical Systems

IF 10.8 1区 数学 Q1 MATHEMATICS, APPLIED SIAM Review Pub Date : 2025-02-06 DOI:10.1137/24m1696974
Tyrus Berry, Suddhasattwa Das
{"title":"Limits of Learning Dynamical Systems","authors":"Tyrus Berry, Suddhasattwa Das","doi":"10.1137/24m1696974","DOIUrl":null,"url":null,"abstract":"SIAM Review, Volume 67, Issue 1, Page 107-137, March 2025. <br/> Abstract.A dynamical system is a transformation of a phase space, and the transformation law is the primary means of defining as well as identifying the dynamical system and is the object of focus of many learning techniques. However, there are many secondary aspects of dynamical systems—invariant sets, the Koopman operator, and Markov approximations—that provide alternative objectives for learning techniques. Crucially, while many learning methods are focused on the transformation law, we find that forecast performance can depend on how well these other aspects of the dynamics are approximated. These different facets of a dynamical system correspond to objects in completely different spaces—namely, interpolation spaces, compact Hausdorff sets, unitary operators, and Markov operators, respectively. Thus, learning techniques targeting any of these four facets perform different kinds of approximations. We examine whether an approximation of any one of these aspects of the dynamics could lead to an approximation of another facet. Many connections and obstructions are brought to light in this analysis. Special focus is placed on methods of learning the primary feature—the dynamics law itself. The main question considered is the connection between learning this law and reconstructing the Koopman operator and the invariant set. The answers are tied to the ergodic and topological properties of the dynamics, and they reveal how these properties determine the limits of forecasting techniques.","PeriodicalId":49525,"journal":{"name":"SIAM Review","volume":"47 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Review","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/24m1696974","RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

SIAM Review, Volume 67, Issue 1, Page 107-137, March 2025.
Abstract.A dynamical system is a transformation of a phase space, and the transformation law is the primary means of defining as well as identifying the dynamical system and is the object of focus of many learning techniques. However, there are many secondary aspects of dynamical systems—invariant sets, the Koopman operator, and Markov approximations—that provide alternative objectives for learning techniques. Crucially, while many learning methods are focused on the transformation law, we find that forecast performance can depend on how well these other aspects of the dynamics are approximated. These different facets of a dynamical system correspond to objects in completely different spaces—namely, interpolation spaces, compact Hausdorff sets, unitary operators, and Markov operators, respectively. Thus, learning techniques targeting any of these four facets perform different kinds of approximations. We examine whether an approximation of any one of these aspects of the dynamics could lead to an approximation of another facet. Many connections and obstructions are brought to light in this analysis. Special focus is placed on methods of learning the primary feature—the dynamics law itself. The main question considered is the connection between learning this law and reconstructing the Koopman operator and the invariant set. The answers are tied to the ergodic and topological properties of the dynamics, and they reveal how these properties determine the limits of forecasting techniques.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
SIAM Review
SIAM Review 数学-应用数学
CiteScore
16.90
自引率
0.00%
发文量
50
期刊介绍: Survey and Review feature papers that provide an integrative and current viewpoint on important topics in applied or computational mathematics and scientific computing. These papers aim to offer a comprehensive perspective on the subject matter. Research Spotlights publish concise research papers in applied and computational mathematics that are of interest to a wide range of readers in SIAM Review. The papers in this section present innovative ideas that are clearly explained and motivated. They stand out from regular publications in specific SIAM journals due to their accessibility and potential for widespread and long-lasting influence.
期刊最新文献
Book Review:; Mathematical Pictures at a Data Science Exhibition Book Review:; Elegant Simulations. From Simple Oscillators to Many-Body Systems Book Review:; Essential Statistics for Data Science: A Concise Crash Course Book Review:; Probability Adventures Book Review:; Numerical Methods in Physics with Python. Second Edition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1