Metabolism of hemicelluloses by root-associated Bacteroidota species

Hannah Martin, Lucy A Rogers, Laila Moushtaq, Amanda A Brindley, Polly Forbes, Amy R Quintion, Andrew R J Murphy, Helen Hipperson, Tim J Daniell, Didier Ndeh, Sam Amsbury, Andrew Hitchcock, Ian D E A Lidbury
{"title":"Metabolism of hemicelluloses by root-associated Bacteroidota species","authors":"Hannah Martin, Lucy A Rogers, Laila Moushtaq, Amanda A Brindley, Polly Forbes, Amy R Quintion, Andrew R J Murphy, Helen Hipperson, Tim J Daniell, Didier Ndeh, Sam Amsbury, Andrew Hitchcock, Ian D E A Lidbury","doi":"10.1093/ismejo/wraf022","DOIUrl":null,"url":null,"abstract":"Bacteroidota species are enriched in the plant microbiome and provide several beneficial functions for their host, including disease suppression. Determining the mechanisms that enable bacteroidota to colonise plant roots may therefore provide opportunities for enhancing crop production through microbiome engineering. By focusing on nutrient acquisition mechanisms, we discovered Bacteroidota species lack high affinity ATP-binding cassette transporters common in other plant bacteria for capturing simple carbon exudates. Instead, bacteroidota possess TonB-dependent transporters predicted to import glycans produced by plant polysaccharide breakdown. Metatranscriptomics (oat rhizosphere) identified several TonB-dependent transporters genes that were highly expressed in Flavobacterium (phylum Bacteroidota). Using Flavobacterium johnsoniae as the model, we experimentally validated the function of one highly expressed TonB-dependent transporters, identifying a conserved Xyloglucan Utilisation Loci conferring an ability to import xyloglucan, the major hemicellulose secreted from plant roots. Xyloglucan utilisation loci harbour an endoxyloglucanase related to family 5 subfamily 4 subclade 2D glycoside hydrolases carrying a mutation that we demonstrate is required for full activity towards xyloglucan. Based on analysing 700 soil metagenomes, subclade 2D glycoside hydrolases have radiated in soil and are prevalent among plant-associated bacteroidota and certain taxa affiliated with Gammaproteobacteria. In bacteroidota, particularly Flavobacterium species, xyloglucan utilisation loci organisation was highly conserved, which may increase their competitive ability to utilise xyloglucan. Given bacteroidota lack high-affinity nutrient transporters for simple carbon, instead possessing xyloglucan utilisation loci and similar gene clusters, our data suggests hemicellulose exudates provide them with an important carbon source in the rhizosphere.","PeriodicalId":516554,"journal":{"name":"The ISME Journal","volume":"41 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The ISME Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ismejo/wraf022","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Bacteroidota species are enriched in the plant microbiome and provide several beneficial functions for their host, including disease suppression. Determining the mechanisms that enable bacteroidota to colonise plant roots may therefore provide opportunities for enhancing crop production through microbiome engineering. By focusing on nutrient acquisition mechanisms, we discovered Bacteroidota species lack high affinity ATP-binding cassette transporters common in other plant bacteria for capturing simple carbon exudates. Instead, bacteroidota possess TonB-dependent transporters predicted to import glycans produced by plant polysaccharide breakdown. Metatranscriptomics (oat rhizosphere) identified several TonB-dependent transporters genes that were highly expressed in Flavobacterium (phylum Bacteroidota). Using Flavobacterium johnsoniae as the model, we experimentally validated the function of one highly expressed TonB-dependent transporters, identifying a conserved Xyloglucan Utilisation Loci conferring an ability to import xyloglucan, the major hemicellulose secreted from plant roots. Xyloglucan utilisation loci harbour an endoxyloglucanase related to family 5 subfamily 4 subclade 2D glycoside hydrolases carrying a mutation that we demonstrate is required for full activity towards xyloglucan. Based on analysing 700 soil metagenomes, subclade 2D glycoside hydrolases have radiated in soil and are prevalent among plant-associated bacteroidota and certain taxa affiliated with Gammaproteobacteria. In bacteroidota, particularly Flavobacterium species, xyloglucan utilisation loci organisation was highly conserved, which may increase their competitive ability to utilise xyloglucan. Given bacteroidota lack high-affinity nutrient transporters for simple carbon, instead possessing xyloglucan utilisation loci and similar gene clusters, our data suggests hemicellulose exudates provide them with an important carbon source in the rhizosphere.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Strain identity effects contribute more to Pseudomonas community functioning than strain interactions Occurrence of “under-the-radar” antibiotic resistance in anthropogenically affected produce Mechanisms of cooperation in the plants-arbuscular mycorrhizal fungi-bacteria continuum Metabolism of hemicelluloses by root-associated Bacteroidota species Active bacteria driving N2O mitigation and dissimilatory nitrate reduction to ammonium in ammonia recovery bioreactors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1