C. M. F. Mingarelli, L. Blecha, T. Bogdanović, M. Charisi, S. Chen, A. Escala, B. Goncharov, M. J. Graham, S. Komossa, S. T. McWilliams, D. A. Schwartz, J. Zrake
{"title":"Insights into Supermassive Black Hole Mergers from the Gravitational Wave Background","authors":"C. M. F. Mingarelli, L. Blecha, T. Bogdanović, M. Charisi, S. Chen, A. Escala, B. Goncharov, M. J. Graham, S. Komossa, S. T. McWilliams, D. A. Schwartz, J. Zrake","doi":"10.1038/s41550-025-02482-1","DOIUrl":null,"url":null,"abstract":"At the Kavli Institute for Theoretical Physics, participants of the rapid response workshop on the gravitational wave background explored discrepancies between experimental results and theoretical models for a background originating from supermassive black hole binary mergers. Underestimated theoretical and/or experimental uncertainties are likely to be the explanation. Another key focus was the wide variety of search methods for supermassive black hole binaries, with the conclusion that the most compelling detections would involve systems exhibiting both electromagnetic and gravitational wave signatures.","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"5 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41550-025-02482-1","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
At the Kavli Institute for Theoretical Physics, participants of the rapid response workshop on the gravitational wave background explored discrepancies between experimental results and theoretical models for a background originating from supermassive black hole binary mergers. Underestimated theoretical and/or experimental uncertainties are likely to be the explanation. Another key focus was the wide variety of search methods for supermassive black hole binaries, with the conclusion that the most compelling detections would involve systems exhibiting both electromagnetic and gravitational wave signatures.
Nature AstronomyPhysics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍:
Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas.
Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence.
In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.