Cancer stem-like cells stay in a plastic state ready for tumor evolution

IF 4.8 2区 医学 Q1 Biochemistry, Genetics and Molecular Biology Neoplasia Pub Date : 2025-02-06 DOI:10.1016/j.neo.2025.101134
Jiali Xu , Houde Zhang , Zhihao Nie , Wenyou He , Yichao Zhao , Zhenhui Huang , Lin Jia , Zhiye Du , Baotong Zhang , Siyuan Xia
{"title":"Cancer stem-like cells stay in a plastic state ready for tumor evolution","authors":"Jiali Xu ,&nbsp;Houde Zhang ,&nbsp;Zhihao Nie ,&nbsp;Wenyou He ,&nbsp;Yichao Zhao ,&nbsp;Zhenhui Huang ,&nbsp;Lin Jia ,&nbsp;Zhiye Du ,&nbsp;Baotong Zhang ,&nbsp;Siyuan Xia","doi":"10.1016/j.neo.2025.101134","DOIUrl":null,"url":null,"abstract":"<div><div>Cell plasticity emerges as a novel cancer hallmark and is pivotal in driving tumor heterogeneity and adaptive resistance to different therapies. Cancer stem-like cells (CSCs) are considered the root of cancer. While first defined as tumor-initiating cells with the potential to develop a heterogeneous tumor, CSCs further demonstrate their roles in cancer metastasis and adaptive therapeutic resistance. Generally, CSCs come from the malignant transformation of somatic stem cells or the de-differentiation of other cancer cells. The resultant cells gain more plasticity and are ready to differentiate into different cell states, enabling them to adapt to therapies and metastatic ecosystems. Therefore, CSCs are likely the nature of tumor cells that gain cell plasticity. However, the phenotypic plasticity of CSCs has never been systematically discussed. Here, we review the distinct intrinsic signaling pathways and unique microenvironmental niches that endow CSC plasticity in solid tumors to adapt to stressful conditions, as well as emerging opportunities for CSC-targeted therapy.</div></div>","PeriodicalId":18917,"journal":{"name":"Neoplasia","volume":"61 ","pages":"Article 101134"},"PeriodicalIF":4.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neoplasia","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1476558625000132","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Cell plasticity emerges as a novel cancer hallmark and is pivotal in driving tumor heterogeneity and adaptive resistance to different therapies. Cancer stem-like cells (CSCs) are considered the root of cancer. While first defined as tumor-initiating cells with the potential to develop a heterogeneous tumor, CSCs further demonstrate their roles in cancer metastasis and adaptive therapeutic resistance. Generally, CSCs come from the malignant transformation of somatic stem cells or the de-differentiation of other cancer cells. The resultant cells gain more plasticity and are ready to differentiate into different cell states, enabling them to adapt to therapies and metastatic ecosystems. Therefore, CSCs are likely the nature of tumor cells that gain cell plasticity. However, the phenotypic plasticity of CSCs has never been systematically discussed. Here, we review the distinct intrinsic signaling pathways and unique microenvironmental niches that endow CSC plasticity in solid tumors to adapt to stressful conditions, as well as emerging opportunities for CSC-targeted therapy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neoplasia
Neoplasia 医学-肿瘤学
CiteScore
9.20
自引率
2.10%
发文量
82
审稿时长
26 days
期刊介绍: Neoplasia publishes the results of novel investigations in all areas of oncology research. The title Neoplasia was chosen to convey the journal’s breadth, which encompasses the traditional disciplines of cancer research as well as emerging fields and interdisciplinary investigations. Neoplasia is interested in studies describing new molecular and genetic findings relating to the neoplastic phenotype and in laboratory and clinical studies demonstrating creative applications of advances in the basic sciences to risk assessment, prognostic indications, detection, diagnosis, and treatment. In addition to regular Research Reports, Neoplasia also publishes Reviews and Meeting Reports. Neoplasia is committed to ensuring a thorough, fair, and rapid review and publication schedule to further its mission of serving both the scientific and clinical communities by disseminating important data and ideas in cancer research.
期刊最新文献
Phase I clinical trial of a novel procaspase-3 activator SM-1 with temozolomide in recurrent high-grade gliomas Identification of 68 HLA-A24 and -A2-restricted cytotoxic T lymphocyte-inducing peptides derived from 10 common cancer-specific antigens frequently expressed in various solid cancers Disruption of redox balance in glutaminolytic triple negative breast cancer by inhibition of glutaminase and glutamate export MYH knockdown in pancreatic cancer cells creates an exploitable DNA repair vulnerability STAT signaling in the pathogenesis and therapy of acute myeloid leukemia and myelodysplastic syndromes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1