Zero-shot pipeline fault detection using percussion method and multi-attribute learning model

IF 7.9 1区 工程技术 Q1 ENGINEERING, MECHANICAL Mechanical Systems and Signal Processing Pub Date : 2025-02-06 DOI:10.1016/j.ymssp.2025.112427
Longguang Peng , Wenjie Huang , Jicheng Zhang , Guofeng Du
{"title":"Zero-shot pipeline fault detection using percussion method and multi-attribute learning model","authors":"Longguang Peng ,&nbsp;Wenjie Huang ,&nbsp;Jicheng Zhang ,&nbsp;Guofeng Du","doi":"10.1016/j.ymssp.2025.112427","DOIUrl":null,"url":null,"abstract":"<div><div>In recent years, the machine learning (ML)-based percussion method has gained considerable attention as a cost-effective and user-friendly non-destructive testing (NDT) technique. However, traditional ML classification methods fail to identify previously unseen fault levels that are not included in the training dataset, thereby limiting their practical applicability. This paper proposes a zero-shot pipeline fault detection method based on a multi-attribute learning model to identify unseen fault classes without requiring their direct signal samples during training. In this method, each fault category is represented by a six-dimensional attribute vector that characterizes its unique properties. During the attribute learning phase, a multi-attribute learning model is constructed by integrating a one-dimensional convolutional neural network (1D-CNN) with a bidirectional long short-term memory network (BiLSTM) to predict the fault attributes. Fault recognition is subsequently achieved using a Euclidean distance-based classifier, which categorizes the predicted attribute vectors based on their similarity to predefined attribute representations. The results demonstrate that when the test set originates from previously unseen pipelines, the proposed method significantly outperforms other approaches in terms of classification performance, exhibiting superior adaptability and robustness. Importantly, it effectively identifies unseen fault severity, overcoming the limitations of traditional methods. In conclusion, the proposed method offers an innovative solution to the problem of data scarcity in fault diagnosis, with promising potential for application in complex industrial environments.</div></div>","PeriodicalId":51124,"journal":{"name":"Mechanical Systems and Signal Processing","volume":"228 ","pages":"Article 112427"},"PeriodicalIF":7.9000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanical Systems and Signal Processing","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0888327025001281","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

Abstract

In recent years, the machine learning (ML)-based percussion method has gained considerable attention as a cost-effective and user-friendly non-destructive testing (NDT) technique. However, traditional ML classification methods fail to identify previously unseen fault levels that are not included in the training dataset, thereby limiting their practical applicability. This paper proposes a zero-shot pipeline fault detection method based on a multi-attribute learning model to identify unseen fault classes without requiring their direct signal samples during training. In this method, each fault category is represented by a six-dimensional attribute vector that characterizes its unique properties. During the attribute learning phase, a multi-attribute learning model is constructed by integrating a one-dimensional convolutional neural network (1D-CNN) with a bidirectional long short-term memory network (BiLSTM) to predict the fault attributes. Fault recognition is subsequently achieved using a Euclidean distance-based classifier, which categorizes the predicted attribute vectors based on their similarity to predefined attribute representations. The results demonstrate that when the test set originates from previously unseen pipelines, the proposed method significantly outperforms other approaches in terms of classification performance, exhibiting superior adaptability and robustness. Importantly, it effectively identifies unseen fault severity, overcoming the limitations of traditional methods. In conclusion, the proposed method offers an innovative solution to the problem of data scarcity in fault diagnosis, with promising potential for application in complex industrial environments.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Mechanical Systems and Signal Processing
Mechanical Systems and Signal Processing 工程技术-工程:机械
CiteScore
14.80
自引率
13.10%
发文量
1183
审稿时长
5.4 months
期刊介绍: Journal Name: Mechanical Systems and Signal Processing (MSSP) Interdisciplinary Focus: Mechanical, Aerospace, and Civil Engineering Purpose:Reporting scientific advancements of the highest quality Arising from new techniques in sensing, instrumentation, signal processing, modelling, and control of dynamic systems
期刊最新文献
Tool wear state recognition study based on an MTF and a vision transformer with a Kolmogorov-Arnold network Main shaft instantaneous azimuth estimation for wind turbines Refined sticking monitoring of drilling tool for drilling rig in underground coal mine: From mechanism analysis to data mining Active motion control of platform and rotor coupling system for floating offshore wind turbines In-process analysis of the dynamic deformation of a bionic lightweight gear
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1