{"title":"Development of carbazole-based molecules for inhibition of mutant hSOD1 protein aggregation in Amyotrophic Lateral Sclerosis","authors":"Siddharth Gusain , Chandra Bhushan Mishra , Kajal Yadav , Meenakshi Sharma , Daman Saluja , Manisha Tiwari","doi":"10.1016/j.bmc.2025.118091","DOIUrl":null,"url":null,"abstract":"<div><div>Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by the loss of upper and lower motor neurons. Cu/Zn superoxide dismutase (SOD1) is one of the genes associated with the familial form of the disease (fALS). The mechanism of neuron degeneration by SOD1 is not clear, it is hypothesised that there is a toxic gain of function in the protein which leads to the downstream effects. In the present study, carbazole-based molecules have been rationally designed and synthesised as potential inhibitors of mutant hSOD1 protein aggregation. SG-9 and SG-10 prevented the aggregation of all three purified mutant hSOD1 proteins. Transmission electron microscopy and dynamic light scattering experiments also revealed that co-incubation of SG-9 and SG-10 with mutant hSOD1 protein resulted in smaller and slender fibril forming. Molecules SG-9 and SG-10 did not display toxicity and prevented Neuro-2a cells expressing hSOD1 G85R protein from its associated cytotoxicity. SG-9 and SG-10 were also able to prevent the transfected cells from apoptosis and were also able to reduce ROS levels associated with hSOD1 G85R protein aggregation significantly. Therefore, novel carbazole derivatives SG-9 and SG-10 proved to be effective inhibitors of mutant hSOD1 protein aggregation and can be further utilised as lead molecules for the amelioration of mutant hSOD1 aggregation-associated ALS.</div></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"120 ","pages":"Article 118091"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S096808962500032X","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterised by the loss of upper and lower motor neurons. Cu/Zn superoxide dismutase (SOD1) is one of the genes associated with the familial form of the disease (fALS). The mechanism of neuron degeneration by SOD1 is not clear, it is hypothesised that there is a toxic gain of function in the protein which leads to the downstream effects. In the present study, carbazole-based molecules have been rationally designed and synthesised as potential inhibitors of mutant hSOD1 protein aggregation. SG-9 and SG-10 prevented the aggregation of all three purified mutant hSOD1 proteins. Transmission electron microscopy and dynamic light scattering experiments also revealed that co-incubation of SG-9 and SG-10 with mutant hSOD1 protein resulted in smaller and slender fibril forming. Molecules SG-9 and SG-10 did not display toxicity and prevented Neuro-2a cells expressing hSOD1 G85R protein from its associated cytotoxicity. SG-9 and SG-10 were also able to prevent the transfected cells from apoptosis and were also able to reduce ROS levels associated with hSOD1 G85R protein aggregation significantly. Therefore, novel carbazole derivatives SG-9 and SG-10 proved to be effective inhibitors of mutant hSOD1 protein aggregation and can be further utilised as lead molecules for the amelioration of mutant hSOD1 aggregation-associated ALS.
期刊介绍:
Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides.
The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.