{"title":"Development of novel BACE1 inhibitors with a hydroxyproline-derived N-amidinopyrrolidine scaffold","authors":"Kazuya Kobayashi , Chinami Taniguchi , Misaki Tanaka , Rani Kimura , Kaho Komurasaki , Meguru Kuwano , Mayu Ikemoto , Natsuki Kawakami , Shinya Oishi , Yasunao Hattori , Kenichi Akaji","doi":"10.1016/j.bmc.2025.118086","DOIUrl":null,"url":null,"abstract":"<div><div>Verubecestat, atabecestat, and elenbecestat are small-molecule BACE1 inhibitors. Based on their structures, we designed and synthesized a novel BACE1 inhibitor with a hydroxyproline-derived <em>N</em>-amidinopyrrolidine scaffold. The initially synthesized derivative <strong>7a</strong> showed a weak but detectable inhibitory activity against recombinant BACE1, which suggested that this novel scaffold was a viable BACE1 inhibitor. To enhance its activity, 22 derivatives with various substituents on the terminal benzene rings of the two biphenyl groups were synthesized and evaluated. Structure–activity relationship studies showed that introducing a substituent at the <em>meta</em> position of the biphenyl group on the hydroxy terminal improved the activity, and we identified the highly active derivative <strong>12f</strong>. In contrast, substituents at the <em>para</em> position of the biphenyl group on the carboxy terminal increased activity. Additionally, we investigated the absolute configuration of the substituted pyrrolidine ring, which showed that the (2<em>S</em>,4<em>R</em>)-derivative exhibited the highest activity. Docking simulations suggested that a bulkier substituent tended to be located in the S1 and S3 pockets and that the binding mode significantly changed depending on which biphenyl group the substituent was attached to. These results show that the new scaffold would be useful for further development of small-molecule BACE1 inhibitors.</div></div>","PeriodicalId":255,"journal":{"name":"Bioorganic & Medicinal Chemistry","volume":"120 ","pages":"Article 118086"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioorganic & Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0968089625000276","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Verubecestat, atabecestat, and elenbecestat are small-molecule BACE1 inhibitors. Based on their structures, we designed and synthesized a novel BACE1 inhibitor with a hydroxyproline-derived N-amidinopyrrolidine scaffold. The initially synthesized derivative 7a showed a weak but detectable inhibitory activity against recombinant BACE1, which suggested that this novel scaffold was a viable BACE1 inhibitor. To enhance its activity, 22 derivatives with various substituents on the terminal benzene rings of the two biphenyl groups were synthesized and evaluated. Structure–activity relationship studies showed that introducing a substituent at the meta position of the biphenyl group on the hydroxy terminal improved the activity, and we identified the highly active derivative 12f. In contrast, substituents at the para position of the biphenyl group on the carboxy terminal increased activity. Additionally, we investigated the absolute configuration of the substituted pyrrolidine ring, which showed that the (2S,4R)-derivative exhibited the highest activity. Docking simulations suggested that a bulkier substituent tended to be located in the S1 and S3 pockets and that the binding mode significantly changed depending on which biphenyl group the substituent was attached to. These results show that the new scaffold would be useful for further development of small-molecule BACE1 inhibitors.
期刊介绍:
Bioorganic & Medicinal Chemistry provides an international forum for the publication of full original research papers and critical reviews on molecular interactions in key biological targets such as receptors, channels, enzymes, nucleotides, lipids and saccharides.
The aim of the journal is to promote a better understanding at the molecular level of life processes, and living organisms, as well as the interaction of these with chemical agents. A special feature will be that colour illustrations will be reproduced at no charge to the author, provided that the Editor agrees that colour is essential to the information content of the illustration in question.