Stability analysis of inertial delayed neural network with delayed impulses via dynamic event-triggered impulsive control

IF 5.5 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Neurocomputing Pub Date : 2025-02-04 DOI:10.1016/j.neucom.2025.129573
Mengyao Shi , Lulu Li , Jinde Cao , Liang Hua , Mahmoud Abdel-Aty
{"title":"Stability analysis of inertial delayed neural network with delayed impulses via dynamic event-triggered impulsive control","authors":"Mengyao Shi ,&nbsp;Lulu Li ,&nbsp;Jinde Cao ,&nbsp;Liang Hua ,&nbsp;Mahmoud Abdel-Aty","doi":"10.1016/j.neucom.2025.129573","DOIUrl":null,"url":null,"abstract":"<div><div>This paper investigates the stability of inertial delayed neural network under dynamic event-triggered impulsive control (DETIC). We innovate by generating the impulsive sequence through DETIC and incorporating impulsive delays, thereby enhancing the model’s practical relevance. Our methodology involves a two-step process: first, we transform the inertial neural network into a first-order differential form using appropriate vector transformations. Then, leveraging Lyapunov-based dynamic event-triggered control, we derive sufficient conditions for both uniform stability and uniform asymptotic stability of the system. To ensure practical applicability, we establish specific parameter constraints for the DETIC mechanism that precludes the Zeno phenomenon. To demonstrate the accuracy and efficacy of our theoretical results, we present two simulation examples.</div></div>","PeriodicalId":19268,"journal":{"name":"Neurocomputing","volume":"626 ","pages":"Article 129573"},"PeriodicalIF":5.5000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Neurocomputing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0925231225002450","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

This paper investigates the stability of inertial delayed neural network under dynamic event-triggered impulsive control (DETIC). We innovate by generating the impulsive sequence through DETIC and incorporating impulsive delays, thereby enhancing the model’s practical relevance. Our methodology involves a two-step process: first, we transform the inertial neural network into a first-order differential form using appropriate vector transformations. Then, leveraging Lyapunov-based dynamic event-triggered control, we derive sufficient conditions for both uniform stability and uniform asymptotic stability of the system. To ensure practical applicability, we establish specific parameter constraints for the DETIC mechanism that precludes the Zeno phenomenon. To demonstrate the accuracy and efficacy of our theoretical results, we present two simulation examples.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Neurocomputing
Neurocomputing 工程技术-计算机:人工智能
CiteScore
13.10
自引率
10.00%
发文量
1382
审稿时长
70 days
期刊介绍: Neurocomputing publishes articles describing recent fundamental contributions in the field of neurocomputing. Neurocomputing theory, practice and applications are the essential topics being covered.
期刊最新文献
Editorial Board Trusted Cross-view Completion for incomplete multi-view classification A spatio-frequency cross fusion model for deepfake detection and segmentation Lightweight oriented object detection with Dynamic Smooth Feature Fusion Network Dynamic event-triggering adaptive dynamic programming for robust stabilization of partially unknown nonlinear systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1