Task replication based energy management using random-weighted privacy-preserving distributed algorithm for real-time embedded system

IF 6.2 2区 计算机科学 Q1 COMPUTER SCIENCE, THEORY & METHODS Future Generation Computer Systems-The International Journal of Escience Pub Date : 2025-01-06 DOI:10.1016/j.future.2025.107708
Dr. A. Velliangiri , Dr. Jayaraj Velusamy , Dr. Maheswari M , Dr. R.Leena Rose
{"title":"Task replication based energy management using random-weighted privacy-preserving distributed algorithm for real-time embedded system","authors":"Dr. A. Velliangiri ,&nbsp;Dr. Jayaraj Velusamy ,&nbsp;Dr. Maheswari M ,&nbsp;Dr. R.Leena Rose","doi":"10.1016/j.future.2025.107708","DOIUrl":null,"url":null,"abstract":"<div><div>Efficient energy management in real-time embedded systems is increasingly challenging due to the growing complexity of distributed tasks and the need for robust privacy preservation. Conventional task mapping and repartitioning techniques have focused on increasing the system reliability, efficiency, and lifespan, but typically incurred a high peak power generation because of Thermal Design Power (TDP) limitations which confines the scalability and applicability. To overcome these problems, the Task Replication-based Energy Management using Random-weighted Privacy-preserving Distributed Algorithm (TR-EM-R-RWPPDA-RTES) is proposed as a new scheme for real-time embedded systems. This architecture integrates Hotspot-Aware Task Mapping (HATM) to optimally load tasks across cores, Dynamic Heterogeneous Earliest Finish Time (DHEFT) scheduling to improve execution timing, and a Reliability-based Random-Weighted Privacy-Preserving Distributed Algorithm (R-RWPPDA) to optimize power consumption. Using these elements, the proposed approach reduces both system energy consumption and system trustworthiness. Comprehensive simulations based on the MiBench benchmark suite, as well as gem5 and McPAT simulators on ARM multicore processors (4, 8, and 16 cores), are also shown to validate the robustness of the proposed method. TR-EM-R-RWPPDA-RTES yields 23.73 %, 36.33 %, and37.84 % peak power consumption reduction with respect to the state-of-the-art solutions, thus providing a robust solution for energy-efficient, robust and reliable real-time embedded systems.</div></div>","PeriodicalId":55132,"journal":{"name":"Future Generation Computer Systems-The International Journal of Escience","volume":"167 ","pages":"Article 107708"},"PeriodicalIF":6.2000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Future Generation Computer Systems-The International Journal of Escience","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167739X25000032","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Efficient energy management in real-time embedded systems is increasingly challenging due to the growing complexity of distributed tasks and the need for robust privacy preservation. Conventional task mapping and repartitioning techniques have focused on increasing the system reliability, efficiency, and lifespan, but typically incurred a high peak power generation because of Thermal Design Power (TDP) limitations which confines the scalability and applicability. To overcome these problems, the Task Replication-based Energy Management using Random-weighted Privacy-preserving Distributed Algorithm (TR-EM-R-RWPPDA-RTES) is proposed as a new scheme for real-time embedded systems. This architecture integrates Hotspot-Aware Task Mapping (HATM) to optimally load tasks across cores, Dynamic Heterogeneous Earliest Finish Time (DHEFT) scheduling to improve execution timing, and a Reliability-based Random-Weighted Privacy-Preserving Distributed Algorithm (R-RWPPDA) to optimize power consumption. Using these elements, the proposed approach reduces both system energy consumption and system trustworthiness. Comprehensive simulations based on the MiBench benchmark suite, as well as gem5 and McPAT simulators on ARM multicore processors (4, 8, and 16 cores), are also shown to validate the robustness of the proposed method. TR-EM-R-RWPPDA-RTES yields 23.73 %, 36.33 %, and37.84 % peak power consumption reduction with respect to the state-of-the-art solutions, thus providing a robust solution for energy-efficient, robust and reliable real-time embedded systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
19.90
自引率
2.70%
发文量
376
审稿时长
10.6 months
期刊介绍: Computing infrastructures and systems are constantly evolving, resulting in increasingly complex and collaborative scientific applications. To cope with these advancements, there is a growing need for collaborative tools that can effectively map, control, and execute these applications. Furthermore, with the explosion of Big Data, there is a requirement for innovative methods and infrastructures to collect, analyze, and derive meaningful insights from the vast amount of data generated. This necessitates the integration of computational and storage capabilities, databases, sensors, and human collaboration. Future Generation Computer Systems aims to pioneer advancements in distributed systems, collaborative environments, high-performance computing, and Big Data analytics. It strives to stay at the forefront of developments in grids, clouds, and the Internet of Things (IoT) to effectively address the challenges posed by these wide-area, fully distributed sensing and computing systems.
期刊最新文献
Self-sovereign identity framework with user-friendly private key generation and rule table Accelerating complex graph queries by summary-based hybrid partitioning for discovering vulnerabilities of distribution equipment DNA: Dual-radio Dual-constraint Node Activation scheduling for energy-efficient data dissemination in IoT Blending lossy and lossless data compression methods to support health data streaming in smart cities Energy–time modelling of distributed multi-population genetic algorithms with dynamic workload in HPC clusters
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1