Advancing heteroatom-enhanced A-DA’D-A pentacyclic small molecule-based acceptors to improve the optoelectronic characteristics for organic photovoltaics

IF 4.3 3区 材料科学 Q2 CHEMISTRY, MULTIDISCIPLINARY Journal of Physics and Chemistry of Solids Pub Date : 2025-01-31 DOI:10.1016/j.jpcs.2025.112610
Ayesha Ghaffar , Muhammad Adnan , Zobia Irshad , Riaz Hussain , Aqsa Ghaffar , Hany W. Darwish , Fakhar Hussain , Mahmood Ahmed , Jongchul Lim
{"title":"Advancing heteroatom-enhanced A-DA’D-A pentacyclic small molecule-based acceptors to improve the optoelectronic characteristics for organic photovoltaics","authors":"Ayesha Ghaffar ,&nbsp;Muhammad Adnan ,&nbsp;Zobia Irshad ,&nbsp;Riaz Hussain ,&nbsp;Aqsa Ghaffar ,&nbsp;Hany W. Darwish ,&nbsp;Fakhar Hussain ,&nbsp;Mahmood Ahmed ,&nbsp;Jongchul Lim","doi":"10.1016/j.jpcs.2025.112610","DOIUrl":null,"url":null,"abstract":"<div><div>Heteroatom side-chain engineering of small-molecule-based (SMs) non-fullerene acceptors (NFAs) is considered a promising material in fabricating high-efficiency organic solar cells (OSCs). The SMs-based NFAs can potentially enhance optical and photovoltaic performances, speeding up the advancement in fabricating efficient OSCs. Here, we proficiently designed eight highly conjugated A−D−A−D−A molecules (AYU-1 to AYU-8). An in-depth study has investigated the structure-property relationship and the impact of heteroatom side-chain engineering. We performed advanced quantum chemical simulations employing density functional theory (DFT) and time-dependent (DFT) methods to examine the structural, quantum mechanical, and chemical parameters. Furthermore, we deeply investigated the hidden potential of this designed AYU-1 to AYU-8 series and synthetic reference molecule AYU-R. For this, we intensively explored the frontier molecular orbitals, binding and excitation energies, reorganization energies, transition density matrix, the density of states, and light harvesting efficiency analysis have been performed. Moreover, we also estimated the optical, optoelectronics, and photovoltaic properties of AYU-R and the designed AYU-1 to AYU-8 series. The optical analysis revealed that the designed series exhibited a bathochromic shift and is highly red-shifted in absorption maxima <em>λ</em><sub>max</sub> (688.95–795.69 nm) with a reduced optical bandgap of (1.91–1.99 eV) as compared to the AYU-R (2.09 eV). Furthermore, the charge transfer analysis of AYU-2:PTB7-Th presented a significant charge shifting at the HOMO (AYU-2) to LUMO (PTB7-Th) interface. Interestingly, the developed series (AYU-1 to AYU-8) demonstrated a superior optoelectronic performance than our reference compound, AYU-R.</div></div>","PeriodicalId":16811,"journal":{"name":"Journal of Physics and Chemistry of Solids","volume":"200 ","pages":"Article 112610"},"PeriodicalIF":4.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics and Chemistry of Solids","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022369725000617","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Heteroatom side-chain engineering of small-molecule-based (SMs) non-fullerene acceptors (NFAs) is considered a promising material in fabricating high-efficiency organic solar cells (OSCs). The SMs-based NFAs can potentially enhance optical and photovoltaic performances, speeding up the advancement in fabricating efficient OSCs. Here, we proficiently designed eight highly conjugated A−D−A−D−A molecules (AYU-1 to AYU-8). An in-depth study has investigated the structure-property relationship and the impact of heteroatom side-chain engineering. We performed advanced quantum chemical simulations employing density functional theory (DFT) and time-dependent (DFT) methods to examine the structural, quantum mechanical, and chemical parameters. Furthermore, we deeply investigated the hidden potential of this designed AYU-1 to AYU-8 series and synthetic reference molecule AYU-R. For this, we intensively explored the frontier molecular orbitals, binding and excitation energies, reorganization energies, transition density matrix, the density of states, and light harvesting efficiency analysis have been performed. Moreover, we also estimated the optical, optoelectronics, and photovoltaic properties of AYU-R and the designed AYU-1 to AYU-8 series. The optical analysis revealed that the designed series exhibited a bathochromic shift and is highly red-shifted in absorption maxima λmax (688.95–795.69 nm) with a reduced optical bandgap of (1.91–1.99 eV) as compared to the AYU-R (2.09 eV). Furthermore, the charge transfer analysis of AYU-2:PTB7-Th presented a significant charge shifting at the HOMO (AYU-2) to LUMO (PTB7-Th) interface. Interestingly, the developed series (AYU-1 to AYU-8) demonstrated a superior optoelectronic performance than our reference compound, AYU-R.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Physics and Chemistry of Solids
Journal of Physics and Chemistry of Solids 工程技术-化学综合
CiteScore
7.80
自引率
2.50%
发文量
605
审稿时长
40 days
期刊介绍: The Journal of Physics and Chemistry of Solids is a well-established international medium for publication of archival research in condensed matter and materials sciences. Areas of interest broadly include experimental and theoretical research on electronic, magnetic, spectroscopic and structural properties as well as the statistical mechanics and thermodynamics of materials. The focus is on gaining physical and chemical insight into the properties and potential applications of condensed matter systems. Within the broad scope of the journal, beyond regular contributions, the editors have identified submissions in the following areas of physics and chemistry of solids to be of special current interest to the journal: Low-dimensional systems Exotic states of quantum electron matter including topological phases Energy conversion and storage Interfaces, nanoparticles and catalysts.
期刊最新文献
A DFT analysis of enhanced structural, mechanical, elastic tensor analysis, optical, electronic, thermoelectric and magnetic characteristics of X2ScHgCl6 (X=Cs, Rb) The prospect of CuX (X=O, S, Se) co-catalysts in photocatalysis: From engineering heterostructural integrity towards enhanced photocatalytic activities – A concise review Advancing organic solar cells: The role of CSi quantum dots in optimized donor–acceptor configurations Conduction mechanism and dielectric relaxation in LiMg0.5Fe2O4 spinel ferrite: A temperature- and frequency-dependent complex impedance study “Enhanced supercapacitor and catalytic properties of CuMn-MOF/Ag composites for energy storage and hydrogen evolution”
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1