BAO: Background-aware activation map optimization for weakly supervised semantic segmentation without background threshold

IF 2.6 4区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Journal of Visual Communication and Image Representation Pub Date : 2025-01-31 DOI:10.1016/j.jvcir.2025.104404
Izumi Fujimori , Masaki Oono , Masami Shishibori
{"title":"BAO: Background-aware activation map optimization for weakly supervised semantic segmentation without background threshold","authors":"Izumi Fujimori ,&nbsp;Masaki Oono ,&nbsp;Masami Shishibori","doi":"10.1016/j.jvcir.2025.104404","DOIUrl":null,"url":null,"abstract":"<div><div>Weakly supervised semantic segmentation (WSSS), which employs only image-level labels, has attracted significant attention due to its low annotation cost. In WSSS, pseudo-labels are derived from class activation maps (CAMs) generated by convolutional neural networks or vision transformers. However, during the generation of pseudo-labels from CAMs, a background threshold is typically used to define background regions. In WSSS scenarios, pixel-level labels are typically unavailable, which makes it challenging to determine an optimal background threshold. This study proposes a method for generating pseudo-labels without a background threshold. The proposed method generates CAMs that activate background regions from CAMs initially based on foreground objects. These background-activated CAMs are then used to generate pseudo-labels. The pseudo-labels are then used to train the model to distinguish between the foreground and background regions in the newly generated activation maps. During inference, the background activation map obtained via training replaces the background threshold. To validate the effectiveness of the proposed method, we conducted experiments using the PASCAL VOC 2012 and MS COCO 2014 datasets. The results demonstrate that the pseudo-labels generated using the proposed method significantly outperform those generated using conventional background thresholds. The code is available at: <span><span>https://github.com/i2mond/BAO</span><svg><path></path></svg></span>.</div></div>","PeriodicalId":54755,"journal":{"name":"Journal of Visual Communication and Image Representation","volume":"107 ","pages":"Article 104404"},"PeriodicalIF":2.6000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Visual Communication and Image Representation","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1047320325000185","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Weakly supervised semantic segmentation (WSSS), which employs only image-level labels, has attracted significant attention due to its low annotation cost. In WSSS, pseudo-labels are derived from class activation maps (CAMs) generated by convolutional neural networks or vision transformers. However, during the generation of pseudo-labels from CAMs, a background threshold is typically used to define background regions. In WSSS scenarios, pixel-level labels are typically unavailable, which makes it challenging to determine an optimal background threshold. This study proposes a method for generating pseudo-labels without a background threshold. The proposed method generates CAMs that activate background regions from CAMs initially based on foreground objects. These background-activated CAMs are then used to generate pseudo-labels. The pseudo-labels are then used to train the model to distinguish between the foreground and background regions in the newly generated activation maps. During inference, the background activation map obtained via training replaces the background threshold. To validate the effectiveness of the proposed method, we conducted experiments using the PASCAL VOC 2012 and MS COCO 2014 datasets. The results demonstrate that the pseudo-labels generated using the proposed method significantly outperform those generated using conventional background thresholds. The code is available at: https://github.com/i2mond/BAO.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Journal of Visual Communication and Image Representation
Journal of Visual Communication and Image Representation 工程技术-计算机:软件工程
CiteScore
5.40
自引率
11.50%
发文量
188
审稿时长
9.9 months
期刊介绍: The Journal of Visual Communication and Image Representation publishes papers on state-of-the-art visual communication and image representation, with emphasis on novel technologies and theoretical work in this multidisciplinary area of pure and applied research. The field of visual communication and image representation is considered in its broadest sense and covers both digital and analog aspects as well as processing and communication in biological visual systems.
期刊最新文献
Editorial Board Delicate image segmentation based on cosine kernel graph cut DUWS Net: Wavelet-based dual U-shaped spatial-frequency fusion transformer network for medical image segmentation Applying usability assessment method for surveillance video anomaly detection with multiple distortion Self-supervised monocular depth estimation with large kernel attention and dynamic scene perception
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1