On the deep carbon cycle in numerical modelling of mantle convection: Implications for the long-term climate evolution

IF 2.4 3区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Physics of the Earth and Planetary Interiors Pub Date : 2025-02-04 DOI:10.1016/j.pepi.2025.107321
Takashi Nakagawa
{"title":"On the deep carbon cycle in numerical modelling of mantle convection: Implications for the long-term climate evolution","authors":"Takashi Nakagawa","doi":"10.1016/j.pepi.2025.107321","DOIUrl":null,"url":null,"abstract":"<div><div>A model of deep-water and carbon cycles was developed to elucidate the mechanisms governing the carbon cycle in Earth's deep interior. This model integrates the solubility limit of carbon in mantle rocks into numerical simulations of mantle convection. To account for the total carbon released from the deep interior, I considered both the carbon release flux through metamorphic decarbonization during subduction and the outgassing fluxes at mid-ocean ridges and hotspots. Additionally, the model assumes a carbon solubility of 1.0 wt% at the top of the mantle transition zone. The carbon budget within Earth's deep interior appears nearly balanced by the carbon uptake during subduction and the decarbonization of the subducting slab through metamorphic reactions. This study also suggests that a warmer climate is likely if the carbon release flux from the deep interior comprises both decarbonization and volcanic outgassing. Therefore, an Earth-like climate may be sustained by the carbon release associated with plate subductions. It is acknowledged that this study presents a case study of carbon cycle modelling in mantle convection simulations, with a specific emphasis on the integration of carbon solubility limits in mantle rocks based on the carbon solubility model in mantle minerals.</div></div>","PeriodicalId":54614,"journal":{"name":"Physics of the Earth and Planetary Interiors","volume":"360 ","pages":"Article 107321"},"PeriodicalIF":2.4000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physics of the Earth and Planetary Interiors","FirstCategoryId":"89","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0031920125000159","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

A model of deep-water and carbon cycles was developed to elucidate the mechanisms governing the carbon cycle in Earth's deep interior. This model integrates the solubility limit of carbon in mantle rocks into numerical simulations of mantle convection. To account for the total carbon released from the deep interior, I considered both the carbon release flux through metamorphic decarbonization during subduction and the outgassing fluxes at mid-ocean ridges and hotspots. Additionally, the model assumes a carbon solubility of 1.0 wt% at the top of the mantle transition zone. The carbon budget within Earth's deep interior appears nearly balanced by the carbon uptake during subduction and the decarbonization of the subducting slab through metamorphic reactions. This study also suggests that a warmer climate is likely if the carbon release flux from the deep interior comprises both decarbonization and volcanic outgassing. Therefore, an Earth-like climate may be sustained by the carbon release associated with plate subductions. It is acknowledged that this study presents a case study of carbon cycle modelling in mantle convection simulations, with a specific emphasis on the integration of carbon solubility limits in mantle rocks based on the carbon solubility model in mantle minerals.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Physics of the Earth and Planetary Interiors
Physics of the Earth and Planetary Interiors 地学天文-地球化学与地球物理
CiteScore
5.00
自引率
4.30%
发文量
78
审稿时长
18.5 weeks
期刊介绍: Launched in 1968 to fill the need for an international journal in the field of planetary physics, geodesy and geophysics, Physics of the Earth and Planetary Interiors has now grown to become important reading matter for all geophysicists. It is the only journal to be entirely devoted to the physical and chemical processes of planetary interiors. Original research papers, review articles, short communications and book reviews are all published on a regular basis; and from time to time special issues of the journal are devoted to the publication of the proceedings of symposia and congresses which the editors feel will be of particular interest to the reader.
期刊最新文献
Editorial Board Archaeointensity study of pottery from the Maya settlements of La Blanca and Chilonché (Petén, Guatemala): New data to constrain the geomagnetic field evolution in Central America Rapid geomagnetic variations and stable stratification at the top of Earth's core Spectral characteristics and implications of located low-frequency marsquakes and impact events from InSight SEIS observations Three-dimensional magnetotelluric inversion with structurally guided regularization constraint
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1