{"title":"Numerical study on ventilation duct layout in subway stations for smoke control performance optimization","authors":"Chen Junfeng , Yang Dong , Zhong Maohua , Hua Fucai","doi":"10.1016/j.jweia.2025.106039","DOIUrl":null,"url":null,"abstract":"<div><div>Smoke is the most important threat to occupant safety in subway station fire accidents. However, only a few smoke control research has concerned the global ventilation system layout problem. With numerical simulation, this work explores the impact of ventilation system parameters on the smoke control efficiency in the hall area of a subway station. The proper ventilation duct layout distance is acquired according to the airflow field structure. The results suggest that: (1) The current ventilation system with two ducts 8m part in the subway station has been proved insufficient for smoke control with about 90% of the heat trapped in the station. (2) The lateral ventilation duct layout, i.e. the ventilation duct amount, is the decisive factor of the ventilation system efficiency. While ventilation volume and vent amount, which is generally considered important factors in traditional studies, show a limited impact on the overall ventilation efficiency. (3) A dimensionless airflow velocity is defined for ventilation duct influence range analysis. The influence range evaluation results are consistent with the tendency of smoke exhaust rate in different ventilation duct distance scenarios. The results could provide theoretical support for the ventilation duct layout design in subway stations.</div></div>","PeriodicalId":54752,"journal":{"name":"Journal of Wind Engineering and Industrial Aerodynamics","volume":"258 ","pages":"Article 106039"},"PeriodicalIF":4.2000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Wind Engineering and Industrial Aerodynamics","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167610525000352","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Smoke is the most important threat to occupant safety in subway station fire accidents. However, only a few smoke control research has concerned the global ventilation system layout problem. With numerical simulation, this work explores the impact of ventilation system parameters on the smoke control efficiency in the hall area of a subway station. The proper ventilation duct layout distance is acquired according to the airflow field structure. The results suggest that: (1) The current ventilation system with two ducts 8m part in the subway station has been proved insufficient for smoke control with about 90% of the heat trapped in the station. (2) The lateral ventilation duct layout, i.e. the ventilation duct amount, is the decisive factor of the ventilation system efficiency. While ventilation volume and vent amount, which is generally considered important factors in traditional studies, show a limited impact on the overall ventilation efficiency. (3) A dimensionless airflow velocity is defined for ventilation duct influence range analysis. The influence range evaluation results are consistent with the tendency of smoke exhaust rate in different ventilation duct distance scenarios. The results could provide theoretical support for the ventilation duct layout design in subway stations.
期刊介绍:
The objective of the journal is to provide a means for the publication and interchange of information, on an international basis, on all those aspects of wind engineering that are included in the activities of the International Association for Wind Engineering http://www.iawe.org/. These are: social and economic impact of wind effects; wind characteristics and structure, local wind environments, wind loads and structural response, diffusion, pollutant dispersion and matter transport, wind effects on building heat loss and ventilation, wind effects on transport systems, aerodynamic aspects of wind energy generation, and codification of wind effects.
Papers on these subjects describing full-scale measurements, wind-tunnel simulation studies, computational or theoretical methods are published, as well as papers dealing with the development of techniques and apparatus for wind engineering experiments.