A2SHE: An anonymous authentication scheme for health emergencies in public venues

IF 8.1 1区 计算机科学 0 COMPUTER SCIENCE, INFORMATION SYSTEMS Information Sciences Pub Date : 2025-02-07 DOI:10.1016/j.ins.2025.121944
Xiaohan Yue , Peng Yang , Haoran Si , Haibo Yang , Fucai Zhou , Qiang Wang , Zhuo Yang , Shi Bai , Yuan He
{"title":"A2SHE: An anonymous authentication scheme for health emergencies in public venues","authors":"Xiaohan Yue ,&nbsp;Peng Yang ,&nbsp;Haoran Si ,&nbsp;Haibo Yang ,&nbsp;Fucai Zhou ,&nbsp;Qiang Wang ,&nbsp;Zhuo Yang ,&nbsp;Shi Bai ,&nbsp;Yuan He","doi":"10.1016/j.ins.2025.121944","DOIUrl":null,"url":null,"abstract":"<div><div>With the outbreak of health emergencies such as COVID-19 and monkeypox, individuals are required to present their pandemic prevention and control (PPC) credentials when accessing public venues, which raises significant privacy concerns that the data from individuals embedded in the PPC credentials may be leaked maliciously. While previous studies have proposed privacy-preserving solutions, they come with their own set of challenges. Specifically, none can simultaneously meet the requirements of non-transferability for the information in authentication and privacy protection for personal identities. Moreover, the existing membership management mechanisms adopted by revocable solutions entail additional computational costs for both users and verifiers. Therefore, this paper presents an anonymous authentication scheme for health emergencies in public venues (A<sup>2</sup>SHE, for short) to overcome these challenges. A<sup>2</sup>SHE offers a novel membership management mechanism that supports revocability for invalid users and traceability for patients while considering the trade-off between privacy and performance. A<sup>2</sup>SHE also introduces a biometric-based key derivation algorithm to prevent the transferability of authentication information. Furthermore, based on the framework of A<sup>2</sup>SHE and considering the security and privacy requirements for health emergencies in public venues, a concrete construction of A<sup>2</sup>SHE is presented. The feasibility of the proposed scheme is demonstrated through both of the security and performance analysis. The results show that A<sup>2</sup>SHE achieves an optimal balance between security and performance that differs from previous schemes, presenting a novel practical approach for access control in public venues.</div></div>","PeriodicalId":51063,"journal":{"name":"Information Sciences","volume":"703 ","pages":"Article 121944"},"PeriodicalIF":8.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020025525000763","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

With the outbreak of health emergencies such as COVID-19 and monkeypox, individuals are required to present their pandemic prevention and control (PPC) credentials when accessing public venues, which raises significant privacy concerns that the data from individuals embedded in the PPC credentials may be leaked maliciously. While previous studies have proposed privacy-preserving solutions, they come with their own set of challenges. Specifically, none can simultaneously meet the requirements of non-transferability for the information in authentication and privacy protection for personal identities. Moreover, the existing membership management mechanisms adopted by revocable solutions entail additional computational costs for both users and verifiers. Therefore, this paper presents an anonymous authentication scheme for health emergencies in public venues (A2SHE, for short) to overcome these challenges. A2SHE offers a novel membership management mechanism that supports revocability for invalid users and traceability for patients while considering the trade-off between privacy and performance. A2SHE also introduces a biometric-based key derivation algorithm to prevent the transferability of authentication information. Furthermore, based on the framework of A2SHE and considering the security and privacy requirements for health emergencies in public venues, a concrete construction of A2SHE is presented. The feasibility of the proposed scheme is demonstrated through both of the security and performance analysis. The results show that A2SHE achieves an optimal balance between security and performance that differs from previous schemes, presenting a novel practical approach for access control in public venues.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Information Sciences
Information Sciences 工程技术-计算机:信息系统
CiteScore
14.00
自引率
17.30%
发文量
1322
审稿时长
10.4 months
期刊介绍: Informatics and Computer Science Intelligent Systems Applications is an esteemed international journal that focuses on publishing original and creative research findings in the field of information sciences. We also feature a limited number of timely tutorial and surveying contributions. Our journal aims to cater to a diverse audience, including researchers, developers, managers, strategic planners, graduate students, and anyone interested in staying up-to-date with cutting-edge research in information science, knowledge engineering, and intelligent systems. While readers are expected to share a common interest in information science, they come from varying backgrounds such as engineering, mathematics, statistics, physics, computer science, cell biology, molecular biology, management science, cognitive science, neurobiology, behavioral sciences, and biochemistry.
期刊最新文献
Multi-label feature selection via nonlinear mapping and manifold regularization Automatic liver tumor segmentation of CT and MRI volumes using ensemble ResUNet-InceptionV4 model LDP-PPA: Local differential privacy protection for principal component analysis A new metric based on pattern cross permutation for capturing interactions in complex time series Editorial Board
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1