Maria Herbster , Bernd Garke , Karsten Harnisch , Oliver Michael , Alexandra Lieb , Ulf Betke , Mandy Könnecke , Andreas Heyn , Paulina Kriegel , Henrike Thärichen , Jessica Bertrand , Manja Krüger , Thorsten Halle
{"title":"Effects of Cr addition on Ti implant alloys (Ti-Cr/Ti-Al-V-Cr) to enhance corrosion and wear resistance","authors":"Maria Herbster , Bernd Garke , Karsten Harnisch , Oliver Michael , Alexandra Lieb , Ulf Betke , Mandy Könnecke , Andreas Heyn , Paulina Kriegel , Henrike Thärichen , Jessica Bertrand , Manja Krüger , Thorsten Halle","doi":"10.1016/j.jmbbm.2025.106899","DOIUrl":null,"url":null,"abstract":"<div><div>Due to their excellent biocompatibility, favorable strength-to-weight ratio and mechanical properties, Ti-based alloys are most commonly used for long-term implants in the human body. Nevertheless, low wear resistance and increased degradation due to corrosion under critical <em>in vivo</em> conditions impair the service life of these implants. This fact opens the potential for optimization, which can be exploited by chemical alloying with Cr.</div><div>This study investigates the effect of Cr alloying on the mechanical, tribological, corrosion properties and cytocompatibility of cp Ti and TiAl6V4 alloys. Argon-arc melting was used to cast binary and quaternary specimens of varying Cr content (0.1, 0.2, 0.4, 1, 2, 4, 8, 10, 15 and 20 m%). After homogenization (1100 °C, 30 min), microstructures were characterized by means of XRD and EBSD and correlated with mechanical properties using hardness and compression tests. At up to 2 m% Cr, a martensitic α′ microstructure is formed. A Cr content of 4 m% reveals two phase α’ + β alloys. Alloying with ≥8 m% Cr results in complete β phase, whereas the significantly reduced fracture compression indicates the formation of metastable ω phase for Cr content of 8–10 m%. Based on XPS analysis, a change in the composition of the passive layers by incorporation of Cr<sub>2</sub>O<sub>3</sub> and CrO<sub>x</sub> is verified. These modified passive layers result in a reduction in corrosion current densities under mimicked severe inflammatory conditions (PBS with HCl and H<sub>2</sub>O<sub>2</sub>). In addition, the tribological behavior is significantly improved by a reduced wear rate for binary Ti-2/4Cr and quaternary TiAlV-4/8Cr alloys. Cell viability is not inhibited by Cr alloying, but reduced calcification is observed for all Cr modified specimens. These findings highlight the tremendous potential of Ti alloying with Cr for improved implant properties, with the alloy range of 2–4 m% Cr being the most suitable.</div></div>","PeriodicalId":380,"journal":{"name":"Journal of the Mechanical Behavior of Biomedical Materials","volume":"164 ","pages":"Article 106899"},"PeriodicalIF":3.3000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of the Mechanical Behavior of Biomedical Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1751616125000153","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Due to their excellent biocompatibility, favorable strength-to-weight ratio and mechanical properties, Ti-based alloys are most commonly used for long-term implants in the human body. Nevertheless, low wear resistance and increased degradation due to corrosion under critical in vivo conditions impair the service life of these implants. This fact opens the potential for optimization, which can be exploited by chemical alloying with Cr.
This study investigates the effect of Cr alloying on the mechanical, tribological, corrosion properties and cytocompatibility of cp Ti and TiAl6V4 alloys. Argon-arc melting was used to cast binary and quaternary specimens of varying Cr content (0.1, 0.2, 0.4, 1, 2, 4, 8, 10, 15 and 20 m%). After homogenization (1100 °C, 30 min), microstructures were characterized by means of XRD and EBSD and correlated with mechanical properties using hardness and compression tests. At up to 2 m% Cr, a martensitic α′ microstructure is formed. A Cr content of 4 m% reveals two phase α’ + β alloys. Alloying with ≥8 m% Cr results in complete β phase, whereas the significantly reduced fracture compression indicates the formation of metastable ω phase for Cr content of 8–10 m%. Based on XPS analysis, a change in the composition of the passive layers by incorporation of Cr2O3 and CrOx is verified. These modified passive layers result in a reduction in corrosion current densities under mimicked severe inflammatory conditions (PBS with HCl and H2O2). In addition, the tribological behavior is significantly improved by a reduced wear rate for binary Ti-2/4Cr and quaternary TiAlV-4/8Cr alloys. Cell viability is not inhibited by Cr alloying, but reduced calcification is observed for all Cr modified specimens. These findings highlight the tremendous potential of Ti alloying with Cr for improved implant properties, with the alloy range of 2–4 m% Cr being the most suitable.
期刊介绍:
The Journal of the Mechanical Behavior of Biomedical Materials is concerned with the mechanical deformation, damage and failure under applied forces, of biological material (at the tissue, cellular and molecular levels) and of biomaterials, i.e. those materials which are designed to mimic or replace biological materials.
The primary focus of the journal is the synthesis of materials science, biology, and medical and dental science. Reports of fundamental scientific investigations are welcome, as are articles concerned with the practical application of materials in medical devices. Both experimental and theoretical work is of interest; theoretical papers will normally include comparison of predictions with experimental data, though we recognize that this may not always be appropriate. The journal also publishes technical notes concerned with emerging experimental or theoretical techniques, letters to the editor and, by invitation, review articles and papers describing existing techniques for the benefit of an interdisciplinary readership.