Exploration of enalapril-lacidipine co-amorphous system with superior dissolution, in vivo absorption and physical stability via incorporated into mesoporous silica

IF 4.3 3区 医学 Q1 PHARMACOLOGY & PHARMACY European Journal of Pharmaceutical Sciences Pub Date : 2025-02-05 DOI:10.1016/j.ejps.2025.107033
Yuhan Guo , Hanyu Wang , Qiang Zhu , Ying Mao , Xiangce Wen , Xin Zhang , Shirui Mao , Huiya Yuan , Jian Guan
{"title":"Exploration of enalapril-lacidipine co-amorphous system with superior dissolution, in vivo absorption and physical stability via incorporated into mesoporous silica","authors":"Yuhan Guo ,&nbsp;Hanyu Wang ,&nbsp;Qiang Zhu ,&nbsp;Ying Mao ,&nbsp;Xiangce Wen ,&nbsp;Xin Zhang ,&nbsp;Shirui Mao ,&nbsp;Huiya Yuan ,&nbsp;Jian Guan","doi":"10.1016/j.ejps.2025.107033","DOIUrl":null,"url":null,"abstract":"<div><div>In the present study, enalapril (ENP) was taking as a potential co-former to fabricate co-amorphous system with lacidipine (LCDP). The ENP/LCDP co-amorphous system was firstly prepared with or without mesoporous SiO<sub>2</sub> and characterized by DSC, XRD and SEM technologies. The potential molecular interactions were evaluated by FTIR spectrums. Furthermore, the dissolution and pharmacokinetics behavior of various formulations were also carried out. It was demonstrated that the completely co-amorphization was obtained at ENP/LCDP 2:1 molar ratio by the intermolecular interactions between ENP and LCDP. The ENP/LCDP co-amorphous system significantly improve the dissolution rate of LCDP and ENP respectively. Compared to the naked ENP/LCDP co-amorphous system, remarkable enhancement of dissolution rate and bioavailability of model drugs was observed by incorporated the co-amorphous system into mesoporous SiO<sub>2</sub>, and a superior physical stability was also observed after accelerated study. Raman mapping revealed that the less microstructure phase separation could be the main reason for the better stability in presence of mesoporous SiO<sub>2</sub>. In conclusion, ENP could be successfully used as a potential co-former to fabricate co-amorphous system with poorly water-soluble drugs and collaborates the co-amorphous with mesoporous SiO<sub>2</sub> become a promising strategy to achieve stable amorphous formulation for further enhancement of dissolution rate and bioavailability.</div></div>","PeriodicalId":12018,"journal":{"name":"European Journal of Pharmaceutical Sciences","volume":"207 ","pages":"Article 107033"},"PeriodicalIF":4.3000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Pharmaceutical Sciences","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0928098725000326","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

In the present study, enalapril (ENP) was taking as a potential co-former to fabricate co-amorphous system with lacidipine (LCDP). The ENP/LCDP co-amorphous system was firstly prepared with or without mesoporous SiO2 and characterized by DSC, XRD and SEM technologies. The potential molecular interactions were evaluated by FTIR spectrums. Furthermore, the dissolution and pharmacokinetics behavior of various formulations were also carried out. It was demonstrated that the completely co-amorphization was obtained at ENP/LCDP 2:1 molar ratio by the intermolecular interactions between ENP and LCDP. The ENP/LCDP co-amorphous system significantly improve the dissolution rate of LCDP and ENP respectively. Compared to the naked ENP/LCDP co-amorphous system, remarkable enhancement of dissolution rate and bioavailability of model drugs was observed by incorporated the co-amorphous system into mesoporous SiO2, and a superior physical stability was also observed after accelerated study. Raman mapping revealed that the less microstructure phase separation could be the main reason for the better stability in presence of mesoporous SiO2. In conclusion, ENP could be successfully used as a potential co-former to fabricate co-amorphous system with poorly water-soluble drugs and collaborates the co-amorphous with mesoporous SiO2 become a promising strategy to achieve stable amorphous formulation for further enhancement of dissolution rate and bioavailability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
9.60
自引率
2.20%
发文量
248
审稿时长
50 days
期刊介绍: The journal publishes research articles, review articles and scientific commentaries on all aspects of the pharmaceutical sciences with emphasis on conceptual novelty and scientific quality. The Editors welcome articles in this multidisciplinary field, with a focus on topics relevant for drug discovery and development. More specifically, the Journal publishes reports on medicinal chemistry, pharmacology, drug absorption and metabolism, pharmacokinetics and pharmacodynamics, pharmaceutical and biomedical analysis, drug delivery (including gene delivery), drug targeting, pharmaceutical technology, pharmaceutical biotechnology and clinical drug evaluation. The journal will typically not give priority to manuscripts focusing primarily on organic synthesis, natural products, adaptation of analytical approaches, or discussions pertaining to drug policy making. Scientific commentaries and review articles are generally by invitation only or by consent of the Editors. Proceedings of scientific meetings may be published as special issues or supplements to the Journal.
期刊最新文献
New generation capsaicin-diclofenac containing, silicon-based transdermal patch provides prolonged analgesic effect in acute and chronic pain models. Understanding the formulation parameters for engineering indocyanine green J-aggregate lipid nanocapsules and solid lipid nanoparticles as promising photothermal agents. Exploration of enalapril-lacidipine co-amorphous system with superior dissolution, in vivo absorption and physical stability via incorporated into mesoporous silica Editorial Board Therapeutic potential of recombinant human type XVII collagen in wound healing and bullous pemphigoid: From bench to bedside
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1