{"title":"Data-driven gradient priors integrated into blind image deblurring","authors":"Qing Qi , Jichang Guo , Chongyi Li","doi":"10.1016/j.image.2025.117275","DOIUrl":null,"url":null,"abstract":"<div><div>Blind image deblurring is a severely ill-posed task. Most existing methods focus on deep learning to learn massive data features while ignoring the vital significance of classic image structure priors. We make extensive use of the image gradient information in a data-driven way. In this paper, we present a Generative Adversarial Network (GAN) architecture based on image structure priors for blind non-uniform image deblurring. Previous image deblurring methods employ Convolutional Neural Networks (CNNs) and non-blind deconvolution algorithms to predict kernel estimations and obtain deblurred images, respectively. We permeate the structure prior of images throughout the design of network architectures and target loss functions. To facilitate network optimization, we propose multi-term target loss functions aimed to supervise the generator to have images with significant structure attributes. In addition, we design a dual-discriminant mechanism for discriminating whether the image edge is clear or not. Not only image content but also the sharpness of image structures need to be discriminated. To learn image gradient features, we develop a dual-flow network that considers both the image and gradient domains to learn image gradient features. Our model directly avoids the accumulated errors caused by two steps of “kernel estimation-non-blind deconvolution”. Extensive experiments on both synthetic datasets and real-world images demonstrate that our model outperforms state-of-the-art methods.</div></div>","PeriodicalId":49521,"journal":{"name":"Signal Processing-Image Communication","volume":"135 ","pages":"Article 117275"},"PeriodicalIF":3.4000,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Signal Processing-Image Communication","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0923596525000220","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0
Abstract
Blind image deblurring is a severely ill-posed task. Most existing methods focus on deep learning to learn massive data features while ignoring the vital significance of classic image structure priors. We make extensive use of the image gradient information in a data-driven way. In this paper, we present a Generative Adversarial Network (GAN) architecture based on image structure priors for blind non-uniform image deblurring. Previous image deblurring methods employ Convolutional Neural Networks (CNNs) and non-blind deconvolution algorithms to predict kernel estimations and obtain deblurred images, respectively. We permeate the structure prior of images throughout the design of network architectures and target loss functions. To facilitate network optimization, we propose multi-term target loss functions aimed to supervise the generator to have images with significant structure attributes. In addition, we design a dual-discriminant mechanism for discriminating whether the image edge is clear or not. Not only image content but also the sharpness of image structures need to be discriminated. To learn image gradient features, we develop a dual-flow network that considers both the image and gradient domains to learn image gradient features. Our model directly avoids the accumulated errors caused by two steps of “kernel estimation-non-blind deconvolution”. Extensive experiments on both synthetic datasets and real-world images demonstrate that our model outperforms state-of-the-art methods.
期刊介绍:
Signal Processing: Image Communication is an international journal for the development of the theory and practice of image communication. Its primary objectives are the following:
To present a forum for the advancement of theory and practice of image communication.
To stimulate cross-fertilization between areas similar in nature which have traditionally been separated, for example, various aspects of visual communications and information systems.
To contribute to a rapid information exchange between the industrial and academic environments.
The editorial policy and the technical content of the journal are the responsibility of the Editor-in-Chief, the Area Editors and the Advisory Editors. The Journal is self-supporting from subscription income and contains a minimum amount of advertisements. Advertisements are subject to the prior approval of the Editor-in-Chief. The journal welcomes contributions from every country in the world.
Signal Processing: Image Communication publishes articles relating to aspects of the design, implementation and use of image communication systems. The journal features original research work, tutorial and review articles, and accounts of practical developments.
Subjects of interest include image/video coding, 3D video representations and compression, 3D graphics and animation compression, HDTV and 3DTV systems, video adaptation, video over IP, peer-to-peer video networking, interactive visual communication, multi-user video conferencing, wireless video broadcasting and communication, visual surveillance, 2D and 3D image/video quality measures, pre/post processing, video restoration and super-resolution, multi-camera video analysis, motion analysis, content-based image/video indexing and retrieval, face and gesture processing, video synthesis, 2D and 3D image/video acquisition and display technologies, architectures for image/video processing and communication.