A hybrid setup for rodent hyperpolarized metabolic imaging using a clinical magnetic resonance scanner

Ditte Bentsen Christensen , Ingeborg Sæten Skre , Jan Henrik Ardenkjær-Larsen , Mor Mishkovsky , Mathilde H Lerche
{"title":"A hybrid setup for rodent hyperpolarized metabolic imaging using a clinical magnetic resonance scanner","authors":"Ditte Bentsen Christensen ,&nbsp;Ingeborg Sæten Skre ,&nbsp;Jan Henrik Ardenkjær-Larsen ,&nbsp;Mor Mishkovsky ,&nbsp;Mathilde H Lerche","doi":"10.1016/j.jmro.2025.100190","DOIUrl":null,"url":null,"abstract":"<div><div>Metabolic magnetic resonance spectroscopic imaging using hyperpolarized contrast agents offers a non-invasive approach to monitoring real-time in vivo energy metabolism. The technique involves hyperpolarizing a contrast agent in a polarizer, administering it to a living system, and then imaging its distribution and metabolites using a magnetic resonance scanner. Over the past two decades, the method has transitioned from in vitro studies to clinical research, with an increasing focus on clinical applications.</div><div>Here, we present a hybrid system that adapts a clinical magnetic resonance scanner for pre-clinical rodent experiments. The hybrid system includes (1) a customizable, 3D-printable animal cradle setup and (2) optimized imaging strategies, including coil configurations, metabolic contrast agent administration, and proton imaging acquisition. The system enables <sup>13</sup>C dynamic imaging, which we illustrate with detection of hyperpolarized [1–<sup>13</sup>C]pyruvate and its metabolites in the mouse brain. We detail the experimental procedure, provide practical guidance, and showcase the capabilities of the system with example data from mouse brain imaging.</div><div>This hybrid setup bridges the gap between clinical and pre-clinical research, enabling iterative testing of equipment, imaging sequences, and hypotheses across phantoms, in vivo rodent models and clinical settings. By facilitating a smoother translation, both forward and reverse, between pre-clinical and clinical applications, this approach enhances the potential for advancing metabolic imaging research.</div></div>","PeriodicalId":365,"journal":{"name":"Journal of Magnetic Resonance Open","volume":"22 ","pages":"Article 100190"},"PeriodicalIF":2.6240,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Magnetic Resonance Open","FirstCategoryId":"1","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666441025000068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Metabolic magnetic resonance spectroscopic imaging using hyperpolarized contrast agents offers a non-invasive approach to monitoring real-time in vivo energy metabolism. The technique involves hyperpolarizing a contrast agent in a polarizer, administering it to a living system, and then imaging its distribution and metabolites using a magnetic resonance scanner. Over the past two decades, the method has transitioned from in vitro studies to clinical research, with an increasing focus on clinical applications.
Here, we present a hybrid system that adapts a clinical magnetic resonance scanner for pre-clinical rodent experiments. The hybrid system includes (1) a customizable, 3D-printable animal cradle setup and (2) optimized imaging strategies, including coil configurations, metabolic contrast agent administration, and proton imaging acquisition. The system enables 13C dynamic imaging, which we illustrate with detection of hyperpolarized [1–13C]pyruvate and its metabolites in the mouse brain. We detail the experimental procedure, provide practical guidance, and showcase the capabilities of the system with example data from mouse brain imaging.
This hybrid setup bridges the gap between clinical and pre-clinical research, enabling iterative testing of equipment, imaging sequences, and hypotheses across phantoms, in vivo rodent models and clinical settings. By facilitating a smoother translation, both forward and reverse, between pre-clinical and clinical applications, this approach enhances the potential for advancing metabolic imaging research.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
一种用于临床磁共振扫描仪的啮齿类动物超极化代谢成像的混合装置
使用超极化造影剂的代谢磁共振光谱成像为实时监测体内能量代谢提供了一种非侵入性方法。该技术包括在偏光器中对造影剂进行超极化,将其施用于活体系统,然后使用磁共振扫描仪对其分布和代谢物进行成像。在过去的二十年中,该方法已经从体外研究过渡到临床研究,越来越关注临床应用。在这里,我们提出了一个混合系统,适应临床磁共振扫描仪的临床前啮齿动物实验。该混合系统包括(1)可定制的3d打印动物摇篮设置和(2)优化的成像策略,包括线圈配置、代谢造影剂管理和质子成像采集。该系统能够实现13C动态成像,我们通过检测小鼠大脑中的超极化[1-13C]丙酮酸及其代谢物来说明这一点。我们详细介绍了实验过程,提供了实用的指导,并通过小鼠脑成像的示例数据展示了该系统的功能。这种混合装置弥合了临床和临床前研究之间的差距,使设备、成像序列和假设能够在幻影、体内啮齿动物模型和临床环境中进行迭代测试。通过促进临床前和临床应用之间更顺畅的正向和反向转换,该方法增强了推进代谢成像研究的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
0
期刊最新文献
Improving a low frequency EPR spectrometer using field-programmable gate array enabled direct digital detection Long-term water migration in hydrated corn stalk pith and hemp stalk by 250 MHz NMR relaxometry and diffusometry Advanced NMR in contemporary China Efficient 15N hyperpolarization of [15N3]metronidazole antibiotic via spin-relayed pulsed SABRE-SHEATH Continuous-flow electron spin resonance microfluidics device with sub-nanoliter sample volume
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1