AI-based non-invasive imaging technologies for early autism spectrum disorder diagnosis: A short review and future directions

IF 6.1 2区 医学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Artificial Intelligence in Medicine Pub Date : 2025-01-31 DOI:10.1016/j.artmed.2025.103074
Mostafa Abdelrahim , Mohamed Khudri , Ahmed Elnakib , Mohamed Shehata , Kate Weafer , Ashraf Khalil , Gehad A. Saleh , Nihal M. Batouty , Mohammed Ghazal , Sohail Contractor , Gregory Barnes , Ayman El-Baz
{"title":"AI-based non-invasive imaging technologies for early autism spectrum disorder diagnosis: A short review and future directions","authors":"Mostafa Abdelrahim ,&nbsp;Mohamed Khudri ,&nbsp;Ahmed Elnakib ,&nbsp;Mohamed Shehata ,&nbsp;Kate Weafer ,&nbsp;Ashraf Khalil ,&nbsp;Gehad A. Saleh ,&nbsp;Nihal M. Batouty ,&nbsp;Mohammed Ghazal ,&nbsp;Sohail Contractor ,&nbsp;Gregory Barnes ,&nbsp;Ayman El-Baz","doi":"10.1016/j.artmed.2025.103074","DOIUrl":null,"url":null,"abstract":"<div><div>Autism Spectrum Disorder (ASD) is a neurological condition, with recent statistics from the CDC indicating a rising prevalence of ASD diagnoses among infants and children. This trend emphasizes the critical importance of early detection, as timely diagnosis facilitates early intervention and enhances treatment outcomes. Consequently, there is an increasing urgency for research to develop innovative tools capable of accurately and objectively identifying ASD in its earliest stages. This paper offers a short overview of recent advancements in non-invasive technology for early ASD diagnosis, focusing on an imaging modality, structural MRI technique, which has shown promising results in early ASD diagnosis. This brief review aims to address several key questions: (i) Which imaging radiomics are associated with ASD? (ii) Is the parcellation step of the brain cortex necessary to improve the diagnostic accuracy of ASD? (iii) What databases are available to researchers interested in developing non-invasive technology for ASD? (iv) How can artificial intelligence tools contribute to improving the diagnostic accuracy of ASD? Finally, our review will highlight future trends in ASD diagnostic efforts.</div></div>","PeriodicalId":55458,"journal":{"name":"Artificial Intelligence in Medicine","volume":"161 ","pages":"Article 103074"},"PeriodicalIF":6.1000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Intelligence in Medicine","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0933365725000090","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Autism Spectrum Disorder (ASD) is a neurological condition, with recent statistics from the CDC indicating a rising prevalence of ASD diagnoses among infants and children. This trend emphasizes the critical importance of early detection, as timely diagnosis facilitates early intervention and enhances treatment outcomes. Consequently, there is an increasing urgency for research to develop innovative tools capable of accurately and objectively identifying ASD in its earliest stages. This paper offers a short overview of recent advancements in non-invasive technology for early ASD diagnosis, focusing on an imaging modality, structural MRI technique, which has shown promising results in early ASD diagnosis. This brief review aims to address several key questions: (i) Which imaging radiomics are associated with ASD? (ii) Is the parcellation step of the brain cortex necessary to improve the diagnostic accuracy of ASD? (iii) What databases are available to researchers interested in developing non-invasive technology for ASD? (iv) How can artificial intelligence tools contribute to improving the diagnostic accuracy of ASD? Finally, our review will highlight future trends in ASD diagnostic efforts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Artificial Intelligence in Medicine
Artificial Intelligence in Medicine 工程技术-工程:生物医学
CiteScore
15.00
自引率
2.70%
发文量
143
审稿时长
6.3 months
期刊介绍: Artificial Intelligence in Medicine publishes original articles from a wide variety of interdisciplinary perspectives concerning the theory and practice of artificial intelligence (AI) in medicine, medically-oriented human biology, and health care. Artificial intelligence in medicine may be characterized as the scientific discipline pertaining to research studies, projects, and applications that aim at supporting decision-based medical tasks through knowledge- and/or data-intensive computer-based solutions that ultimately support and improve the performance of a human care provider.
期刊最新文献
Hyperbolic multivariate feature learning in higher-order heterogeneous networks for drug–disease prediction Editorial Board BDFormer: Boundary-aware dual-decoder transformer for skin lesion segmentation Finger-aware Artificial Neural Network for predicting arthritis in Patients with hand pain Artificial intelligence-driven approaches in antibiotic stewardship programs and optimizing prescription practices: A systematic review
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1