{"title":"Enabling Feedback-Free MIMO Transmission for FD-RAN: A Data-Driven Approach","authors":"Jingbo Liu;Jiacheng Chen;Zongxi Liu;Haibo Zhou","doi":"10.1109/TMC.2024.3495719","DOIUrl":null,"url":null,"abstract":"To enhance flexibility and facilitate resource cooperation, a novel fully-decoupled radio access network (FD-RAN) architecture is proposed for 6G. However, the decoupling of uplink (UL) and downlink (DL) in FD-RAN makes the existing feedback mechanism ineffective. To this end, we propose an end-to-end data-driven MIMO solution without the conventional channel feedback procedure. Data-driven MIMO can alleviate the drawbacks of feedback including overheads and delay, and can provide customized precoding design for different BSs based on their historical channel data. It essentially learns a mapping from geolocation to MIMO transmission parameters. We first present a codebook-based approach, which selects transmission parameters from the statistics of discrete channel state information (CSI) values and utilizes nearest neighbor interpolation for spatial inference. We further present a non-codebook-based approach, which 1) derives the optimal precoder from the singular value decomposition (SVD) of the channel; 2) utilizes variational autoencoder (VAE) to select the representative precoder from the latent Gaussian representations; and 3) exploits Gaussian process regression (GPR) to predict unknown precoders in the space domain. Extensive simulations are performed on a link-level 5G simulator using realistic ray-tracing channel data. The results demonstrate the effectiveness of data-driven MIMO, showcasing its potential for application in FD-RAN and 6G.","PeriodicalId":50389,"journal":{"name":"IEEE Transactions on Mobile Computing","volume":"24 3","pages":"2437-2454"},"PeriodicalIF":7.7000,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Mobile Computing","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10750278/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
To enhance flexibility and facilitate resource cooperation, a novel fully-decoupled radio access network (FD-RAN) architecture is proposed for 6G. However, the decoupling of uplink (UL) and downlink (DL) in FD-RAN makes the existing feedback mechanism ineffective. To this end, we propose an end-to-end data-driven MIMO solution without the conventional channel feedback procedure. Data-driven MIMO can alleviate the drawbacks of feedback including overheads and delay, and can provide customized precoding design for different BSs based on their historical channel data. It essentially learns a mapping from geolocation to MIMO transmission parameters. We first present a codebook-based approach, which selects transmission parameters from the statistics of discrete channel state information (CSI) values and utilizes nearest neighbor interpolation for spatial inference. We further present a non-codebook-based approach, which 1) derives the optimal precoder from the singular value decomposition (SVD) of the channel; 2) utilizes variational autoencoder (VAE) to select the representative precoder from the latent Gaussian representations; and 3) exploits Gaussian process regression (GPR) to predict unknown precoders in the space domain. Extensive simulations are performed on a link-level 5G simulator using realistic ray-tracing channel data. The results demonstrate the effectiveness of data-driven MIMO, showcasing its potential for application in FD-RAN and 6G.
期刊介绍:
IEEE Transactions on Mobile Computing addresses key technical issues related to various aspects of mobile computing. This includes (a) architectures, (b) support services, (c) algorithm/protocol design and analysis, (d) mobile environments, (e) mobile communication systems, (f) applications, and (g) emerging technologies. Topics of interest span a wide range, covering aspects like mobile networks and hosts, mobility management, multimedia, operating system support, power management, online and mobile environments, security, scalability, reliability, and emerging technologies such as wearable computers, body area networks, and wireless sensor networks. The journal serves as a comprehensive platform for advancements in mobile computing research.