Search3D: Hierarchical Open-Vocabulary 3D Segmentation

IF 4.6 2区 计算机科学 Q2 ROBOTICS IEEE Robotics and Automation Letters Pub Date : 2025-01-29 DOI:10.1109/LRA.2025.3534523
Ayca Takmaz;Alexandros Delitzas;Robert W. Sumner;Francis Engelmann;Johanna Wald;Federico Tombari
{"title":"Search3D: Hierarchical Open-Vocabulary 3D Segmentation","authors":"Ayca Takmaz;Alexandros Delitzas;Robert W. Sumner;Francis Engelmann;Johanna Wald;Federico Tombari","doi":"10.1109/LRA.2025.3534523","DOIUrl":null,"url":null,"abstract":"Open-vocabulary 3D segmentation enables exploration of 3D spaces using free-form text descriptions. Existing methods for open-vocabulary 3D instance segmentation primarily focus on identifying <italic>object</i>-level instances but struggle with finer-grained scene entities such as <italic>object parts</i>, or regions described by generic <italic>attributes</i>. In this work, we introduce Search3D, an approach to construct hierarchical open-vocabulary 3D scene representations, enabling 3D search at multiple levels of granularity: fine-grained object parts, entire objects, or regions described by attributes like materials. Unlike prior methods, Search3D shifts towards a more flexible open-vocabulary 3D search paradigm, moving beyond explicit object-centric queries. For systematic evaluation, we further contribute a scene-scale open-vocabulary 3D part segmentation benchmark based on MultiScan, along with a set of open-vocabulary fine-grained part annotations on ScanNet++. Search3D outperforms baselines in scene-scale open-vocabulary 3D part segmentation, while maintaining strong performance in segmenting 3D objects and materials.","PeriodicalId":13241,"journal":{"name":"IEEE Robotics and Automation Letters","volume":"10 3","pages":"2558-2565"},"PeriodicalIF":4.6000,"publicationDate":"2025-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Robotics and Automation Letters","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/10857311/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ROBOTICS","Score":null,"Total":0}
引用次数: 0

Abstract

Open-vocabulary 3D segmentation enables exploration of 3D spaces using free-form text descriptions. Existing methods for open-vocabulary 3D instance segmentation primarily focus on identifying object-level instances but struggle with finer-grained scene entities such as object parts, or regions described by generic attributes. In this work, we introduce Search3D, an approach to construct hierarchical open-vocabulary 3D scene representations, enabling 3D search at multiple levels of granularity: fine-grained object parts, entire objects, or regions described by attributes like materials. Unlike prior methods, Search3D shifts towards a more flexible open-vocabulary 3D search paradigm, moving beyond explicit object-centric queries. For systematic evaluation, we further contribute a scene-scale open-vocabulary 3D part segmentation benchmark based on MultiScan, along with a set of open-vocabulary fine-grained part annotations on ScanNet++. Search3D outperforms baselines in scene-scale open-vocabulary 3D part segmentation, while maintaining strong performance in segmenting 3D objects and materials.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
IEEE Robotics and Automation Letters
IEEE Robotics and Automation Letters Computer Science-Computer Science Applications
CiteScore
9.60
自引率
15.40%
发文量
1428
期刊介绍: The scope of this journal is to publish peer-reviewed articles that provide a timely and concise account of innovative research ideas and application results, reporting significant theoretical findings and application case studies in areas of robotics and automation.
期刊最新文献
Table of Contents IEEE Robotics and Automation Society Information IEEE Robotics and Automation Letters Information for Authors IEEE Robotics and Automation Society Information Image-Based Visual Servoing for Enhanced Cooperation of Dual-Arm Manipulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1