{"title":"In Silico Discovery of Antigenic-Secreted Proteins to Diagnostic Human Toxocariasis","authors":"María A. Henao, Isabella Cortes, Juan P. Isaza","doi":"10.1007/s11686-024-00966-0","DOIUrl":null,"url":null,"abstract":"<div><h3>Background</h3><p>Human toxocariasis is a helminthic zoonosis caused by infection of <i>Toxocara canis</i> or <i>T. cati.</i> Humans can be infected by through ingestion of embryonated eggs from contaminated water, food or soil. Diagnosis is challenging, immunodiagnosis tests are commonly implemented with major pitfalls in the cross-reactivity with other pathogens, particularly in endemic areas.</p><h3>Methods</h3><p>With the aim of identify species-specific genes encoding for highly expressed antigenic proteins, a list of parasites that may infect humans and that might present similar clinical symptoms to <i>T. canis</i> infections was built. Only organisms whose genomes were completely sequenced and the proteome predicted were included. First, orthologous proteins were detected and the subcellular localization of <i>T. canis</i> proteins was predicted. In order to identify differentially expressed genes encoding proteins in larvae L3, pair-wise comparisons among transcriptomes from body parts and genders were performed. Finally, all secreted proteins classified as species-specific of <i>T. canis</i>, whose genes were upregulated in larvae L3 were included in an antigenic prediction.</p><h3>Results</h3><p>Twenty-eight parasites were included in the analyses, proteins of <i>T. canis</i> were clustered in 11,399 groups, however, 279 were species-specific groups which represent 816 proteins. Three hundred and twenty-two proteins were predicted to be secreted and upregulated in larvae L3, however, after filtering these proteins by their orthology inference, only three proteins met all the features included in this study (species-specific, upregulated, secreted, and antigenic potential). To conclude, our strategy in the study is a rational approach for discovering antigenic proteins to be used in diagnosis.</p></div>","PeriodicalId":6932,"journal":{"name":"Acta Parasitologica","volume":"70 1","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11686-024-00966-0.pdf","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Parasitologica","FirstCategoryId":"3","ListUrlMain":"https://link.springer.com/article/10.1007/s11686-024-00966-0","RegionNum":3,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background
Human toxocariasis is a helminthic zoonosis caused by infection of Toxocara canis or T. cati. Humans can be infected by through ingestion of embryonated eggs from contaminated water, food or soil. Diagnosis is challenging, immunodiagnosis tests are commonly implemented with major pitfalls in the cross-reactivity with other pathogens, particularly in endemic areas.
Methods
With the aim of identify species-specific genes encoding for highly expressed antigenic proteins, a list of parasites that may infect humans and that might present similar clinical symptoms to T. canis infections was built. Only organisms whose genomes were completely sequenced and the proteome predicted were included. First, orthologous proteins were detected and the subcellular localization of T. canis proteins was predicted. In order to identify differentially expressed genes encoding proteins in larvae L3, pair-wise comparisons among transcriptomes from body parts and genders were performed. Finally, all secreted proteins classified as species-specific of T. canis, whose genes were upregulated in larvae L3 were included in an antigenic prediction.
Results
Twenty-eight parasites were included in the analyses, proteins of T. canis were clustered in 11,399 groups, however, 279 were species-specific groups which represent 816 proteins. Three hundred and twenty-two proteins were predicted to be secreted and upregulated in larvae L3, however, after filtering these proteins by their orthology inference, only three proteins met all the features included in this study (species-specific, upregulated, secreted, and antigenic potential). To conclude, our strategy in the study is a rational approach for discovering antigenic proteins to be used in diagnosis.
期刊介绍:
Acta Parasitologica is an international journal covering the latest advances in the subject.
Acta Parasitologica publishes original papers on all aspects of parasitology and host-parasite relationships, including the latest discoveries in biochemical and molecular biology of parasites, their physiology, morphology, taxonomy and ecology, as well as original research papers on immunology, pathology, and epidemiology of parasitic diseases in the context of medical, veterinary and biological sciences. The journal also publishes short research notes, invited review articles, book reviews.
The journal was founded in 1953 as "Acta Parasitologica Polonica" by the Polish Parasitological Society and since 1954 has been published by W. Stefanski Institute of Parasitology of the Polish Academy of Sciences in Warsaw. Since 1992 in has appeared as Acta Parasitologica in four issues per year.