Prospects for Measuring the Post-Newtonian \(\boldsymbol{\gamma}\) Parameter Using Two Satellites Equipped with Highly Stable Atomic Clocks and a Doppler Compensation System

IF 1.1 4区 物理与天体物理 Q3 ASTRONOMY & ASTROPHYSICS Astronomy Letters-A Journal of Astronomy and Space Astrophysics Pub Date : 2025-02-07 DOI:10.1134/S1063773724700415
D. A. Litvinov
{"title":"Prospects for Measuring the Post-Newtonian \\(\\boldsymbol{\\gamma}\\) Parameter Using Two Satellites Equipped with Highly Stable Atomic Clocks and a Doppler Compensation System","authors":"D. A. Litvinov","doi":"10.1134/S1063773724700415","DOIUrl":null,"url":null,"abstract":"<p>We investigate the possibility of experimentally determining the PPN <span>\\(\\gamma\\)</span> parameter by measuring the gravitational frequency shift of signals exchanged by two satellites in heliocentric orbits. The satellites are supposed to be equipped with highly stable atomic clocks and the Gravity Probe A non-relativistic Doppler compensation system. We demonstrate that the Doppler compensation system significantly lowers the requirements to the satellite velocity determination accuracy but, at the same time, cancels out the leading contribution, of <span>\\(O(c^{-3})\\)</span>, to the frequency shift due to <span>\\(\\gamma\\)</span>. We derive an equation for the Doppler-compensated frequency shift due to <span>\\(\\gamma\\)</span> in the next-to-leading order, <span>\\(O(c^{-4})\\)</span>, and show that it is greatly enhanced by numerical factors that rapidly grow in magnitude for signals that propagate close to the gravitational field source. Due to these ‘‘enhanced’’ factors, the accuracy of the proposed experiment with the best of the currently available clocks, such as the JILA SrI, can reach <span>\\(1.7\\times 10^{-7}\\)</span> after 5 yr of data accumulation, if performed in the optimal orbital configuration. This is an order of magnitude worse than our earlier estimate for the accuracy of a similar experiment that does not rely on the Doppler compensation system but 2 orders of magnitude better than the current best result obtained with the Cassini interplanetary probe. Finally, we discuss aspects of the practical realization of the proposed experiment, including prospects for realizing it as part of a multi-science mission that also targets other kinds of gravitational experiments.</p>","PeriodicalId":55443,"journal":{"name":"Astronomy Letters-A Journal of Astronomy and Space Astrophysics","volume":"50 9","pages":"537 - 549"},"PeriodicalIF":1.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Astronomy Letters-A Journal of Astronomy and Space Astrophysics","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1134/S1063773724700415","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

We investigate the possibility of experimentally determining the PPN \(\gamma\) parameter by measuring the gravitational frequency shift of signals exchanged by two satellites in heliocentric orbits. The satellites are supposed to be equipped with highly stable atomic clocks and the Gravity Probe A non-relativistic Doppler compensation system. We demonstrate that the Doppler compensation system significantly lowers the requirements to the satellite velocity determination accuracy but, at the same time, cancels out the leading contribution, of \(O(c^{-3})\), to the frequency shift due to \(\gamma\). We derive an equation for the Doppler-compensated frequency shift due to \(\gamma\) in the next-to-leading order, \(O(c^{-4})\), and show that it is greatly enhanced by numerical factors that rapidly grow in magnitude for signals that propagate close to the gravitational field source. Due to these ‘‘enhanced’’ factors, the accuracy of the proposed experiment with the best of the currently available clocks, such as the JILA SrI, can reach \(1.7\times 10^{-7}\) after 5 yr of data accumulation, if performed in the optimal orbital configuration. This is an order of magnitude worse than our earlier estimate for the accuracy of a similar experiment that does not rely on the Doppler compensation system but 2 orders of magnitude better than the current best result obtained with the Cassini interplanetary probe. Finally, we discuss aspects of the practical realization of the proposed experiment, including prospects for realizing it as part of a multi-science mission that also targets other kinds of gravitational experiments.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.70
自引率
22.20%
发文量
0
审稿时长
6-12 weeks
期刊介绍: Astronomy Letters is an international peer reviewed journal that publishes the results of original research on all aspects of modern astronomy and astrophysics including high energy astrophysics, cosmology, space astronomy, theoretical astrophysics, radio astronomy, extragalactic astronomy, stellar astronomy, and investigation of the Solar system.
期刊最新文献
Parameters of the Possible Companion of the Neutron Star toward the Supernova Remnant G315.4–2.30 Radial Velocities of Narrow Emission Line Components in the Spectra of T Tauri Stars Magnetic Flux Ropes with a Current Shell As Flaring Solar Structures Models of Mira Variables of the Large Magellanic Cloud Prospects for Measuring the Post-Newtonian \(\boldsymbol{\gamma}\) Parameter Using Two Satellites Equipped with Highly Stable Atomic Clocks and a Doppler Compensation System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1