Transformation and fate of Fe(III) in petroleum-hydrocarbon-contaminated soil and groundwater

IF 0.9 4区 地球科学 Q4 GEOCHEMISTRY & GEOPHYSICS Geochemical Transactions Pub Date : 2025-02-07 DOI:10.1186/s12932-025-00097-z
Essouassi Elikem, David Bulmer, Kris Bradshaw, Ardalan Hayatifar, Matthew B. J. Lindsay, Steven D. Siciliano, Derek Peak
{"title":"Transformation and fate of Fe(III) in petroleum-hydrocarbon-contaminated soil and groundwater","authors":"Essouassi Elikem,&nbsp;David Bulmer,&nbsp;Kris Bradshaw,&nbsp;Ardalan Hayatifar,&nbsp;Matthew B. J. Lindsay,&nbsp;Steven D. Siciliano,&nbsp;Derek Peak","doi":"10.1186/s12932-025-00097-z","DOIUrl":null,"url":null,"abstract":"<div><p>In anoxic subsurface environments, low Fe(III) bioaccessibility greatly limits <i>in situ</i> biodegradation of petroleum hydrocarbons (PHCs). Ferric ammonium citrate is a soluble compound that has the potential to increase the bioaccessibility of Fe(III). However, in neutral to alkaline environments, Fe(III) hydrolysis can produce Fe(III) (oxyhydr)oxides that may subsequently transform or recrystallize to relatively stable and less bioaccessible phases. Accordingly, the objective of this study was to elucidate the transformation and fate of Fe(III) contributed by ferric ammonium citrate in a gasoline-contaminated subsurface environment that was undergoing <i>in situ</i> bioremediation. Ferric ammonium citrate, together with sodium tripolyphosphate, magnesium sulphate, and nitric acid, was continuously injected into the contaminated groundwater for about 22 weeks. Colloids in the groundwater (solid particles retained on a 0.45 <span>\\(\\upmu\\)</span>m filter) and soil cores were collected from the site. Fe speciation in these samples was characterized using X-ray absorption near edge structure (XANES) and Fourier transform infrared (FTIR) spectroscopy. The groundwater colloids (GWCs) contained mostly octahedrally coordinated Fe(III), but the subsoils contained both octahedrally coordinated Fe(III) and Fe(II). The fraction of Fe(II) in the subsoils generally increased after about 22 weeks of continuous amendment injection. Ferric ammonium citrate did not persist in the PHC-contaminated subsurface: the Fe(III) it contained was transformed to solid phases. Fe(III)-organic-matter (Fe(III)-OM) complex/coprecipitate and sulfate green rust were the major phases present in the GWCs; akaganeite, chloride green rust, vivianite, ferrihydrite, Fe(III)-silicate, and magnetite were present as minor phases. The subsoils contained three major phases: Fe(III)-OM complex/coprecipitate, magnetite, and calcium ferric silicate. The presence of major Fe(II) phases in the subsoils strongly indicate that secondary Fe(III) phases (especially Fe(III)-OM complex/coprecipitate) served as terminal electron acceptors during the microbial degradation of PHCs in the contaminated subsurface.</p></div>","PeriodicalId":12694,"journal":{"name":"Geochemical Transactions","volume":"26 1","pages":""},"PeriodicalIF":0.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://geochemicaltransactions.biomedcentral.com/counter/pdf/10.1186/s12932-025-00097-z","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemical Transactions","FirstCategoryId":"89","ListUrlMain":"https://link.springer.com/article/10.1186/s12932-025-00097-z","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

In anoxic subsurface environments, low Fe(III) bioaccessibility greatly limits in situ biodegradation of petroleum hydrocarbons (PHCs). Ferric ammonium citrate is a soluble compound that has the potential to increase the bioaccessibility of Fe(III). However, in neutral to alkaline environments, Fe(III) hydrolysis can produce Fe(III) (oxyhydr)oxides that may subsequently transform or recrystallize to relatively stable and less bioaccessible phases. Accordingly, the objective of this study was to elucidate the transformation and fate of Fe(III) contributed by ferric ammonium citrate in a gasoline-contaminated subsurface environment that was undergoing in situ bioremediation. Ferric ammonium citrate, together with sodium tripolyphosphate, magnesium sulphate, and nitric acid, was continuously injected into the contaminated groundwater for about 22 weeks. Colloids in the groundwater (solid particles retained on a 0.45 \(\upmu\)m filter) and soil cores were collected from the site. Fe speciation in these samples was characterized using X-ray absorption near edge structure (XANES) and Fourier transform infrared (FTIR) spectroscopy. The groundwater colloids (GWCs) contained mostly octahedrally coordinated Fe(III), but the subsoils contained both octahedrally coordinated Fe(III) and Fe(II). The fraction of Fe(II) in the subsoils generally increased after about 22 weeks of continuous amendment injection. Ferric ammonium citrate did not persist in the PHC-contaminated subsurface: the Fe(III) it contained was transformed to solid phases. Fe(III)-organic-matter (Fe(III)-OM) complex/coprecipitate and sulfate green rust were the major phases present in the GWCs; akaganeite, chloride green rust, vivianite, ferrihydrite, Fe(III)-silicate, and magnetite were present as minor phases. The subsoils contained three major phases: Fe(III)-OM complex/coprecipitate, magnetite, and calcium ferric silicate. The presence of major Fe(II) phases in the subsoils strongly indicate that secondary Fe(III) phases (especially Fe(III)-OM complex/coprecipitate) served as terminal electron acceptors during the microbial degradation of PHCs in the contaminated subsurface.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geochemical Transactions
Geochemical Transactions 地学-地球化学与地球物理
CiteScore
3.70
自引率
4.30%
发文量
2
审稿时长
>12 weeks
期刊介绍: Geochemical Transactions publishes high-quality research in all areas of chemistry as it relates to materials and processes occurring in terrestrial and extraterrestrial systems.
期刊最新文献
Transformation and fate of Fe(III) in petroleum-hydrocarbon-contaminated soil and groundwater Dissolution and solubility of the calcium-nickel carbonate solid solutions [(Ca1−xNix)CO3] at 25 °C Silicate coprecipitation reduces green rust crystal size and limits dissolution-precipitation during air oxidation Development of the Arabian-Nubian Shield along the Marsa Alam-Idfu transect, Central-Eastern Desert, Egypt: geochemical implementation of zircon U-Pb geochronology Probing atomic-scale processes at the ferrihydrite-water interface with reactive molecular dynamics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1