{"title":"Novel AC–AC Converter Design for High-Efficiency Wireless Electric Vehicle Charging Systems","authors":"Lilia Tightiz, Wedad Khamis Al-Shibli","doi":"10.1155/er/8866716","DOIUrl":null,"url":null,"abstract":"<div>\n <p>Electric vehicle (EV) batteries may now be conveniently charged with wireless chargers. These systems are prized for their dependability and security in a range of weather scenarios. Generally speaking, there are two kinds of EV wireless charging systems: static (for parked cars) and dynamic (for moving cars). Traditionally, EV chargers have parts like a high-frequency direct current (DC)–alternating current (AC) converter that usually requires intricate cabling and an AC–DC converter that aids in power quality management. In these systems, a process called as “transformation” occurs when energy moves from a main component—the power source—to a secondary component—the vehicle’s receiver. Eliminating physical connections, such wires and charging outlets on the car, improves convenience and lessens wear and tear on the charger. This is another advantage of wireless chargers over plug-in varieties. In this study, we investigate a novel design that substitutes a single integrated AC–AC converter on the input side for the conventional AC–DC and DC–AC converters. This creative solution lowers the demand on power switches while raising voltage levels, which not only makes the system simpler but also more efficient. To further reduce the voltage stress on these switches, we additionally employ a multilevel diode clamp inverter, which not only helps to reduce the size of the switches but also greatly increases the efficiency of the system. To validate the performance of this new converter, we provide data from the laboratory as well as simulation results.</p>\n </div>","PeriodicalId":14051,"journal":{"name":"International Journal of Energy Research","volume":"2025 1","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1155/er/8866716","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Energy Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1155/er/8866716","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Electric vehicle (EV) batteries may now be conveniently charged with wireless chargers. These systems are prized for their dependability and security in a range of weather scenarios. Generally speaking, there are two kinds of EV wireless charging systems: static (for parked cars) and dynamic (for moving cars). Traditionally, EV chargers have parts like a high-frequency direct current (DC)–alternating current (AC) converter that usually requires intricate cabling and an AC–DC converter that aids in power quality management. In these systems, a process called as “transformation” occurs when energy moves from a main component—the power source—to a secondary component—the vehicle’s receiver. Eliminating physical connections, such wires and charging outlets on the car, improves convenience and lessens wear and tear on the charger. This is another advantage of wireless chargers over plug-in varieties. In this study, we investigate a novel design that substitutes a single integrated AC–AC converter on the input side for the conventional AC–DC and DC–AC converters. This creative solution lowers the demand on power switches while raising voltage levels, which not only makes the system simpler but also more efficient. To further reduce the voltage stress on these switches, we additionally employ a multilevel diode clamp inverter, which not only helps to reduce the size of the switches but also greatly increases the efficiency of the system. To validate the performance of this new converter, we provide data from the laboratory as well as simulation results.
期刊介绍:
The International Journal of Energy Research (IJER) is dedicated to providing a multidisciplinary, unique platform for researchers, scientists, engineers, technology developers, planners, and policy makers to present their research results and findings in a compelling manner on novel energy systems and applications. IJER covers the entire spectrum of energy from production to conversion, conservation, management, systems, technologies, etc. We encourage papers submissions aiming at better efficiency, cost improvements, more effective resource use, improved design and analysis, reduced environmental impact, and hence leading to better sustainability.
IJER is concerned with the development and exploitation of both advanced traditional and new energy sources, systems, technologies and applications. Interdisciplinary subjects in the area of novel energy systems and applications are also encouraged. High-quality research papers are solicited in, but are not limited to, the following areas with innovative and novel contents:
-Biofuels and alternatives
-Carbon capturing and storage technologies
-Clean coal technologies
-Energy conversion, conservation and management
-Energy storage
-Energy systems
-Hybrid/combined/integrated energy systems for multi-generation
-Hydrogen energy and fuel cells
-Hydrogen production technologies
-Micro- and nano-energy systems and technologies
-Nuclear energy
-Renewable energies (e.g. geothermal, solar, wind, hydro, tidal, wave, biomass)
-Smart energy system