Explosive Ocean Island Volcanism Explained by High Magmatic Water Content Determined Through Nominally Anhydrous Minerals

IF 2.9 2区 地球科学 Q2 GEOCHEMISTRY & GEOPHYSICS Geochemistry Geophysics Geosystems Pub Date : 2025-02-08 DOI:10.1029/2024GC012013
Harri Geiger, Franz Weis, Valentin R. Troll, Frances M. Deegan, Henrik Skogby, Juan Carlos Carracedo
{"title":"Explosive Ocean Island Volcanism Explained by High Magmatic Water Content Determined Through Nominally Anhydrous Minerals","authors":"Harri Geiger,&nbsp;Franz Weis,&nbsp;Valentin R. Troll,&nbsp;Frances M. Deegan,&nbsp;Henrik Skogby,&nbsp;Juan Carlos Carracedo","doi":"10.1029/2024GC012013","DOIUrl":null,"url":null,"abstract":"<p>Ocean island basalt (OIB) magmas are generally water poor and usually contain less than 1 wt.% of H<sub>2</sub>O. Explosive eruption styles are therefore rare. When explosive eruptions occur, they are thought to be driven by either volatile-enriched mantle sources or by gas segregation processes during magma differentiation. Here we report on crystal- and water-rich porphyritic basanites and ankaramites from El Hierro in the Canary Islands, Spain, that erupted inside the El Golfo giant landslide collapse embayment that formed at ≥39 ka. Using rock and mineral chemistry in combination with H<sub>2</sub>O contents of nominally anhydrous minerals (olivine and clinopyroxene), we show that despite their relatively primitive composition, the post-collapse ankaramites are not primary mantle melts. Instead, they record high crystal contents as well as unusually high water contents of up to 3.20 ± 0.64 wt.% H<sub>2</sub>O, and likely represent a normally inaccessible snapshot of dense crystal-rich magma compositions that reside in the sub-island underplating zone. We hypothesize that their eruption was facilitated by sudden decompression from crustal unloading, implying that the El Golfo landslide may have affected the deeper portions of the plumbing system and triggered the ascent of volatile-rich, crystal-laden magmas from the underplating zone. We propose that some “wet” and explosive ocean island eruptions might result from the ascent of deep-seated water-rich magmas in the aftermath of vertical unloading and associated decompression.</p>","PeriodicalId":50422,"journal":{"name":"Geochemistry Geophysics Geosystems","volume":"26 2","pages":""},"PeriodicalIF":2.9000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1029/2024GC012013","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geochemistry Geophysics Geosystems","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2024GC012013","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

Ocean island basalt (OIB) magmas are generally water poor and usually contain less than 1 wt.% of H2O. Explosive eruption styles are therefore rare. When explosive eruptions occur, they are thought to be driven by either volatile-enriched mantle sources or by gas segregation processes during magma differentiation. Here we report on crystal- and water-rich porphyritic basanites and ankaramites from El Hierro in the Canary Islands, Spain, that erupted inside the El Golfo giant landslide collapse embayment that formed at ≥39 ka. Using rock and mineral chemistry in combination with H2O contents of nominally anhydrous minerals (olivine and clinopyroxene), we show that despite their relatively primitive composition, the post-collapse ankaramites are not primary mantle melts. Instead, they record high crystal contents as well as unusually high water contents of up to 3.20 ± 0.64 wt.% H2O, and likely represent a normally inaccessible snapshot of dense crystal-rich magma compositions that reside in the sub-island underplating zone. We hypothesize that their eruption was facilitated by sudden decompression from crustal unloading, implying that the El Golfo landslide may have affected the deeper portions of the plumbing system and triggered the ascent of volatile-rich, crystal-laden magmas from the underplating zone. We propose that some “wet” and explosive ocean island eruptions might result from the ascent of deep-seated water-rich magmas in the aftermath of vertical unloading and associated decompression.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Geochemistry Geophysics Geosystems
Geochemistry Geophysics Geosystems 地学-地球化学与地球物理
CiteScore
5.90
自引率
11.40%
发文量
252
审稿时长
1 months
期刊介绍: Geochemistry, Geophysics, Geosystems (G3) publishes research papers on Earth and planetary processes with a focus on understanding the Earth as a system. Observational, experimental, and theoretical investigations of the solid Earth, hydrosphere, atmosphere, biosphere, and solar system at all spatial and temporal scales are welcome. Articles should be of broad interest, and interdisciplinary approaches are encouraged. Areas of interest for this peer-reviewed journal include, but are not limited to: The physics and chemistry of the Earth, including its structure, composition, physical properties, dynamics, and evolution Principles and applications of geochemical proxies to studies of Earth history The physical properties, composition, and temporal evolution of the Earth''s major reservoirs and the coupling between them The dynamics of geochemical and biogeochemical cycles at all spatial and temporal scales Physical and cosmochemical constraints on the composition, origin, and evolution of the Earth and other terrestrial planets The chemistry and physics of solar system materials that are relevant to the formation, evolution, and current state of the Earth and the planets Advances in modeling, observation, and experimentation that are of widespread interest in the geosciences.
期刊最新文献
Strain Localization and Seismic Properties in the Heterogeneous Ailaoshan-Red River Shear Zone, Southeast Asia Magnetic Characteristics of Highly Serpentinized Peridotite in the Iberia Abyssal Plain and Implications for Marine Magnetic Anomalies Paleo-Earthquake Fingerprints and Along-Strike Slip Variation of the Silent Mt. Morrone Normal Fault (Central Italy): A Structural-Geochemical Approach Anomalous Sediment Consolidation and Alteration From Buried Incoming Plate Seamounts Along the Cascadia Margin U-Pb Geochronology and Lu-Hf Isotopic Characterization of the Canadian High Arctic Large Igneous Province (HALIP): Comparison to Oceanic Plateau Magmatism
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1