Experimental demonstrations of high-accuracy 3D/2D indoor visible light positioning using imaging multiple-input multiple-output receivers and artificial neural networks

IF 2.3 4区 计算机科学 Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Iet Optoelectronics Pub Date : 2025-02-07 DOI:10.1049/ote2.70000
Juan. A. Apolo, Isaac. N. O. Osahon, Beatriz Ortega, Vicenç Almenar, Jianming Tang, Sujan Rajbhandari
{"title":"Experimental demonstrations of high-accuracy 3D/2D indoor visible light positioning using imaging multiple-input multiple-output receivers and artificial neural networks","authors":"Juan. A. Apolo,&nbsp;Isaac. N. O. Osahon,&nbsp;Beatriz Ortega,&nbsp;Vicenç Almenar,&nbsp;Jianming Tang,&nbsp;Sujan Rajbhandari","doi":"10.1049/ote2.70000","DOIUrl":null,"url":null,"abstract":"<p>This paper proposes and presents the first experimental demonstration of a high-precision indoor 2D and 3D visible light positioning (VLP) system using an imaging multiple-input multiple-output (MIMO) configuration with supervised artificial neural network. The proposed system utilises four distributed transmitters and receiver with four photodiodes and an imaging optics. The experiments are conducted in a typical indoor environment with transmitter separations of 300 mm and a link distance of 1400 mm. The experimental results show 2D and 3D positioning accuracies of 3.7 and 51 mm, respectively. A simulation model is also developed for the VLP system to validate the experimental results. Further optimisation of the VLP system in the simulation platform leads to improved 2D and 3D positioning accuracies of 2 and 14.7 mm, respectively. The proposed system can be seamlessly integrated with existing lighting infrastructures and is also compatible with the MIMO visible light communication system, indicating the potential for practical implementation in integrated communications and positioning applications.</p>","PeriodicalId":13408,"journal":{"name":"Iet Optoelectronics","volume":"19 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1049/ote2.70000","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Iet Optoelectronics","FirstCategoryId":"94","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1049/ote2.70000","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes and presents the first experimental demonstration of a high-precision indoor 2D and 3D visible light positioning (VLP) system using an imaging multiple-input multiple-output (MIMO) configuration with supervised artificial neural network. The proposed system utilises four distributed transmitters and receiver with four photodiodes and an imaging optics. The experiments are conducted in a typical indoor environment with transmitter separations of 300 mm and a link distance of 1400 mm. The experimental results show 2D and 3D positioning accuracies of 3.7 and 51 mm, respectively. A simulation model is also developed for the VLP system to validate the experimental results. Further optimisation of the VLP system in the simulation platform leads to improved 2D and 3D positioning accuracies of 2 and 14.7 mm, respectively. The proposed system can be seamlessly integrated with existing lighting infrastructures and is also compatible with the MIMO visible light communication system, indicating the potential for practical implementation in integrated communications and positioning applications.

Abstract Image

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Iet Optoelectronics
Iet Optoelectronics 工程技术-电信学
CiteScore
4.50
自引率
0.00%
发文量
26
审稿时长
6 months
期刊介绍: IET Optoelectronics publishes state of the art research papers in the field of optoelectronics and photonics. The topics that are covered by the journal include optical and optoelectronic materials, nanophotonics, metamaterials and photonic crystals, light sources (e.g. LEDs, lasers and devices for lighting), optical modulation and multiplexing, optical fibres, cables and connectors, optical amplifiers, photodetectors and optical receivers, photonic integrated circuits, photonic systems, optical signal processing and holography and displays. Most of the papers published describe original research from universities and industrial and government laboratories. However correspondence suggesting review papers and tutorials is welcomed, as are suggestions for special issues. IET Optoelectronics covers but is not limited to the following topics: Optical and optoelectronic materials Light sources, including LEDs, lasers and devices for lighting Optical modulation and multiplexing Optical fibres, cables and connectors Optical amplifiers Photodetectors and optical receivers Photonic integrated circuits Nanophotonics and photonic crystals Optical signal processing Holography Displays
期刊最新文献
Experimental demonstrations of high-accuracy 3D/2D indoor visible light positioning using imaging multiple-input multiple-output receivers and artificial neural networks Identification of optical fibres in a passive optical network using highly temperature insensitive filters and reflectors Design of dynamic range adjustable laser ranging chip based on element sharing Continuous-wave and cavity-dumped 1064 nm Nd:YVO4 laser based on the magneto-optical effect Elucidations of electronic and optical properties of the w-ZnCh (Ch=O, S and Se) compounds: Insights from Ab-initio calculations and spectroscopy measurements
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1