Redox-dependent hydrogen-bond network rearrangement of ferredoxin-NADP+ reductase revealed by high-resolution X-ray and neutron crystallography.

IF 1.1 4区 生物学 Q4 BIOCHEMICAL RESEARCH METHODS Acta crystallographica. Section F, Structural biology communications Pub Date : 2025-03-01 DOI:10.1107/S2053230X25000524
Midori Uenaka, Yusuke Ohnishi, Akane Ise, Jiang Yu, Naomine Yano, Katsuhiro Kusaka, Hideaki Tanaka, Genji Kurisu
{"title":"Redox-dependent hydrogen-bond network rearrangement of ferredoxin-NADP<sup>+</sup> reductase revealed by high-resolution X-ray and neutron crystallography.","authors":"Midori Uenaka, Yusuke Ohnishi, Akane Ise, Jiang Yu, Naomine Yano, Katsuhiro Kusaka, Hideaki Tanaka, Genji Kurisu","doi":"10.1107/S2053230X25000524","DOIUrl":null,"url":null,"abstract":"<p><p>High-resolution X-ray and neutron crystallography were employed to elucidate redox-dependent structural changes in ferredoxin-NADP<sup>+</sup> reductase (FNR) from maize. This study focused on the rearrangement of hydrogen-bond networks upon FAD reduction. The X-ray structures of wild-type FNR in oxidized and reduced states were refined to 1.15 and 1.10 Å resolution, respectively, revealing no large structural changes in the main-chain backbones. Neutron crystallography provided complementary insights, confirming protonation at N1 and N5 of the isoalloxazine ring and visualizing hydrogen bonds that were undetectable by X-ray analysis. These findings illuminate the dynamic reorganization of water-mediated hydrogen-bond networks during redox transitions, which may underpin the redox-dependent modulation of partner binding by FNR. This integrated structural approach highlights the synergistic use of X-ray and neutron crystallography in studying redox-active proteins.</p>","PeriodicalId":7029,"journal":{"name":"Acta crystallographica. Section F, Structural biology communications","volume":" ","pages":""},"PeriodicalIF":1.1000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta crystallographica. Section F, Structural biology communications","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1107/S2053230X25000524","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

High-resolution X-ray and neutron crystallography were employed to elucidate redox-dependent structural changes in ferredoxin-NADP+ reductase (FNR) from maize. This study focused on the rearrangement of hydrogen-bond networks upon FAD reduction. The X-ray structures of wild-type FNR in oxidized and reduced states were refined to 1.15 and 1.10 Å resolution, respectively, revealing no large structural changes in the main-chain backbones. Neutron crystallography provided complementary insights, confirming protonation at N1 and N5 of the isoalloxazine ring and visualizing hydrogen bonds that were undetectable by X-ray analysis. These findings illuminate the dynamic reorganization of water-mediated hydrogen-bond networks during redox transitions, which may underpin the redox-dependent modulation of partner binding by FNR. This integrated structural approach highlights the synergistic use of X-ray and neutron crystallography in studying redox-active proteins.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Acta crystallographica. Section F, Structural biology communications
Acta crystallographica. Section F, Structural biology communications BIOCHEMICAL RESEARCH METHODSBIOCHEMISTRY &-BIOCHEMISTRY & MOLECULAR BIOLOGY
CiteScore
1.90
自引率
0.00%
发文量
95
期刊介绍: Acta Crystallographica Section F is a rapid structural biology communications journal. Articles on any aspect of structural biology, including structures determined using high-throughput methods or from iterative studies such as those used in the pharmaceutical industry, are welcomed by the journal. The journal offers the option of open access, and all communications benefit from unlimited free use of colour illustrations and no page charges. Authors are encouraged to submit multimedia content for publication with their articles. Acta Cryst. F has a dedicated online tool called publBio that is designed to make the preparation and submission of articles easier for authors.
期刊最新文献
Structure of Clostridium leptum carboxyspermidine decarboxylase and comparison to homologs prevalent within the human gut microbiome. Redox-dependent hydrogen-bond network rearrangement of ferredoxin-NADP+ reductase revealed by high-resolution X-ray and neutron crystallography. A two-in-one expression construct for biophysical and structural studies of the human pregnane X receptor ligand-binding domain, a pharmaceutical and environmental target. The first report of structural analysis of a nucleic acid using crystals grown in space. CryoCrane: an open-source GUI for analyzing cryo-EM screening data sets.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1