CaBind_MCNN: Identifying Potential Calcium Channel Blocker Targets by Predicting Calcium-Binding Sites in Ion Channels and Ion Transporters Using Protein Language Models and Multiscale Feature Extraction.
Yan-Yun Chang, Yu-Chen Liu, Wei-En Jhang, Sin-Siang Wei, Yu-Yen Ou
{"title":"CaBind_MCNN: Identifying Potential Calcium Channel Blocker Targets by Predicting Calcium-Binding Sites in Ion Channels and Ion Transporters Using Protein Language Models and Multiscale Feature Extraction.","authors":"Yan-Yun Chang, Yu-Chen Liu, Wei-En Jhang, Sin-Siang Wei, Yu-Yen Ou","doi":"10.1021/acs.jcim.4c02252","DOIUrl":null,"url":null,"abstract":"<p><p>Calcium ions (Ca<sup>2+</sup>) are crucial for various physiological processes, including neurotransmission and cardiac function. Dysregulation of Ca<sup>2+</sup> homeostasis can lead to serious health conditions such as cardiac arrhythmias and hypertension. Ion channels and transporters play a vital role in maintaining cellular Ca<sup>2+</sup> balance by facilitating Ca<sup>2+</sup> transport across cell membranes. Accurate prediction of Ca<sup>2+</sup> binding sites within these proteins is essential for understanding their function and identifying potential therapeutic targets, particularly for developing novel calcium channel blockers (CCBs). This study introduces CaBind_MCNN, an innovative computational model that leverages pretrained protein language models (PLMs) and a multiscale feature extraction approach to predict Ca<sup>2+</sup> binding sites in ion channels and transporter proteins. Our method integrates embeddings from the ProtTrans PLM with a convolutional neural network (CNN)-based multiwindow scanning approach, capable of capturing diverse sequence features relevant to Ca<sup>2+</sup> binding. The model, trained on a curated data set of 27 calcium-binding protein sequences, achieves high accuracy with an area under the curve (AUC) of 0.9886, significantly outperforming some existing methods. These results demonstrate the potential of CaBind_MCNN to enhance drug discovery efforts by identifying potential CCB targets and advancing the development of novel therapies for calcium-related disorders.</p>","PeriodicalId":44,"journal":{"name":"Journal of Chemical Information and Modeling ","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Chemical Information and Modeling ","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.jcim.4c02252","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0
Abstract
Calcium ions (Ca2+) are crucial for various physiological processes, including neurotransmission and cardiac function. Dysregulation of Ca2+ homeostasis can lead to serious health conditions such as cardiac arrhythmias and hypertension. Ion channels and transporters play a vital role in maintaining cellular Ca2+ balance by facilitating Ca2+ transport across cell membranes. Accurate prediction of Ca2+ binding sites within these proteins is essential for understanding their function and identifying potential therapeutic targets, particularly for developing novel calcium channel blockers (CCBs). This study introduces CaBind_MCNN, an innovative computational model that leverages pretrained protein language models (PLMs) and a multiscale feature extraction approach to predict Ca2+ binding sites in ion channels and transporter proteins. Our method integrates embeddings from the ProtTrans PLM with a convolutional neural network (CNN)-based multiwindow scanning approach, capable of capturing diverse sequence features relevant to Ca2+ binding. The model, trained on a curated data set of 27 calcium-binding protein sequences, achieves high accuracy with an area under the curve (AUC) of 0.9886, significantly outperforming some existing methods. These results demonstrate the potential of CaBind_MCNN to enhance drug discovery efforts by identifying potential CCB targets and advancing the development of novel therapies for calcium-related disorders.
期刊介绍:
The Journal of Chemical Information and Modeling publishes papers reporting new methodology and/or important applications in the fields of chemical informatics and molecular modeling. Specific topics include the representation and computer-based searching of chemical databases, molecular modeling, computer-aided molecular design of new materials, catalysts, or ligands, development of new computational methods or efficient algorithms for chemical software, and biopharmaceutical chemistry including analyses of biological activity and other issues related to drug discovery.
Astute chemists, computer scientists, and information specialists look to this monthly’s insightful research studies, programming innovations, and software reviews to keep current with advances in this integral, multidisciplinary field.
As a subscriber you’ll stay abreast of database search systems, use of graph theory in chemical problems, substructure search systems, pattern recognition and clustering, analysis of chemical and physical data, molecular modeling, graphics and natural language interfaces, bibliometric and citation analysis, and synthesis design and reactions databases.