Striatal neurones expressing D1 dopamine receptors modulate consciousness in sevoflurane but not propofol anaesthesia in mice.

IF 9.1 1区 医学 Q1 ANESTHESIOLOGY British journal of anaesthesia Pub Date : 2025-02-05 DOI:10.1016/j.bja.2024.10.049
Kang Zhou, Zi-Jun Hou, Xu-Liang Jiang, Yu-Jie Xiao, Lin-Chen Zhang, Wei Xu, Bo Xiong, Wei-Min Qu, Yu-Guang Huang, Zhi-Li Huang, Lu Wang
{"title":"Striatal neurones expressing D1 dopamine receptors modulate consciousness in sevoflurane but not propofol anaesthesia in mice.","authors":"Kang Zhou, Zi-Jun Hou, Xu-Liang Jiang, Yu-Jie Xiao, Lin-Chen Zhang, Wei Xu, Bo Xiong, Wei-Min Qu, Yu-Guang Huang, Zhi-Li Huang, Lu Wang","doi":"10.1016/j.bja.2024.10.049","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Sevoflurane and propofol are the most widely used inhaled and i.v. general anaesthetics, respectively. The mechanisms by which sevoflurane and propofol induce loss of consciousness (LOC) remain unclear. Recent studies implicate the brain dopaminergic circuit in anaesthetic-induced LOC and the cortical-striatal-thalamic-cortical loop in decoding consciousness. We investigated the contribution of the dorsal striatum, which is a critical interface between the dopaminergic circuit and the cortical-striatal-thalamic-cortical loop, in sevoflurane and propofol anaesthesia.</p><p><strong>Methods: </strong>Electroencephalography and electromyography recordings and righting reflex tests were used to determine LOC and recovery of consciousness (ROC). The activity of D1 dopamine receptor (D1R)-expressing neurones in the dorsal striatum was monitored using fibre photometry, and regulated using optogenetic and chemogenetic methods in D1R-Cre mice.</p><p><strong>Results: </strong>Population activities of striatal D1R neurones began to decrease before LOC and gradually returned after ROC. During sevoflurane anaesthesia, optogenetic activation of striatal D1R neurones induced ROC at cortical and behavioural levels in steady-state anaesthesia and promoted cortical activation in deep burst suppression anaesthesia. Chemogenetic inhibition of striatal D1R neurones accelerated induction (from 242.0 [46.1] to 194.0 [26.9] s; P=0.010) and delayed emergence (from 93.5 [21.2] to 133.5 [33.9] s; P=0.005), whereas chemogenetic activation of these neurones accelerated emergence (from 107 [23.7] to 81.3 [16.1] s; P=0.011). However, neither optogenetic nor chemogenetic manipulation of striatal D1R neurones had any effects on propofol anaesthesia.</p><p><strong>Conclusions: </strong>Striatal D1R neurones modulate the state of consciousness in sevoflurane anaesthesia, but not in propofol anaesthesia.</p>","PeriodicalId":9250,"journal":{"name":"British journal of anaesthesia","volume":" ","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"British journal of anaesthesia","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.bja.2024.10.049","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ANESTHESIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Sevoflurane and propofol are the most widely used inhaled and i.v. general anaesthetics, respectively. The mechanisms by which sevoflurane and propofol induce loss of consciousness (LOC) remain unclear. Recent studies implicate the brain dopaminergic circuit in anaesthetic-induced LOC and the cortical-striatal-thalamic-cortical loop in decoding consciousness. We investigated the contribution of the dorsal striatum, which is a critical interface between the dopaminergic circuit and the cortical-striatal-thalamic-cortical loop, in sevoflurane and propofol anaesthesia.

Methods: Electroencephalography and electromyography recordings and righting reflex tests were used to determine LOC and recovery of consciousness (ROC). The activity of D1 dopamine receptor (D1R)-expressing neurones in the dorsal striatum was monitored using fibre photometry, and regulated using optogenetic and chemogenetic methods in D1R-Cre mice.

Results: Population activities of striatal D1R neurones began to decrease before LOC and gradually returned after ROC. During sevoflurane anaesthesia, optogenetic activation of striatal D1R neurones induced ROC at cortical and behavioural levels in steady-state anaesthesia and promoted cortical activation in deep burst suppression anaesthesia. Chemogenetic inhibition of striatal D1R neurones accelerated induction (from 242.0 [46.1] to 194.0 [26.9] s; P=0.010) and delayed emergence (from 93.5 [21.2] to 133.5 [33.9] s; P=0.005), whereas chemogenetic activation of these neurones accelerated emergence (from 107 [23.7] to 81.3 [16.1] s; P=0.011). However, neither optogenetic nor chemogenetic manipulation of striatal D1R neurones had any effects on propofol anaesthesia.

Conclusions: Striatal D1R neurones modulate the state of consciousness in sevoflurane anaesthesia, but not in propofol anaesthesia.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
13.50
自引率
7.10%
发文量
488
审稿时长
27 days
期刊介绍: The British Journal of Anaesthesia (BJA) is a prestigious publication that covers a wide range of topics in anaesthesia, critical care medicine, pain medicine, and perioperative medicine. It aims to disseminate high-impact original research, spanning fundamental, translational, and clinical sciences, as well as clinical practice, technology, education, and training. Additionally, the journal features review articles, notable case reports, correspondence, and special articles that appeal to a broader audience. The BJA is proudly associated with The Royal College of Anaesthetists, The College of Anaesthesiologists of Ireland, and The Hong Kong College of Anaesthesiologists. This partnership provides members of these esteemed institutions with access to not only the BJA but also its sister publication, BJA Education. It is essential to note that both journals maintain their editorial independence. Overall, the BJA offers a diverse and comprehensive platform for anaesthetists, critical care physicians, pain specialists, and perioperative medicine practitioners to contribute and stay updated with the latest advancements in their respective fields.
期刊最新文献
Editorial Board Contents Associate Editorial Board and cover image caption Acknowledgement of Assessors - 2023 Acknowledgement of Assessors - 2024
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1