Yi Qin, Shuran Huo, Ana María González, Lizhong Guo, Javier Santos, Liangyu Li
{"title":"Research on Neuroimmune Gastrointestinal Diseases Based on Artificial Intelligence: Molecular Dynamics Analysis of Caffeine and DRD3 Protein.","authors":"Yi Qin, Shuran Huo, Ana María González, Lizhong Guo, Javier Santos, Liangyu Li","doi":"10.2174/0113892010325902241120111429","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>The aim of this study was to develop a clinical application model for the rational use of caffeine.</p><p><strong>Background: </strong>Caffeine is related to the incidence of neuro immune gastrointestinal diseases. Coffee consumption needs to be optimized in order to reduce the incidence rate.</p><p><strong>Purpose: </strong>By using KEEG analysis to explore potential molecular signaling pathways involved in the progression of neurological immune gastrointestinal diseases, and analyzing the details of this signaling Pathway using molecular simulation results, which can support AI system for doctor.</p><p><strong>Methods: </strong>The research team designed a controlled experiment to analyze the differences in reward and reinforcement of Brain pleasure/addiction and dopamine related signaling pathways function between multiple groups of people with different coffee drinking habits and a blank control group. The study team used molecular dynamics methods to investigate the signaling route that links coffee with the binding of dopamine receptor D3.AI is used to predict the prevalence of gastric reflux disease.</p><p><strong>Results: </strong>Human experiments have shown a correlation between caffeine intake and gastroesophageal reflux disease. AI algorithm results can provide clinical support, and molecular simulation results are consistent with human experimental results. Caffeine and DRD3 protein have a stable interaction system.</p><p><strong>Conclusion: </strong>The research team elucidated the intermolecular interaction between caffeine and DRD3, and AI algorithms can predict the likelihood of disease occurrence, providing a new strategy for clinical practice. This study has passed ethical approval at Chifeng Cancer Hospital, and the ethical documents for this study have been submitted to the World Health Organization for filing.</p>","PeriodicalId":10881,"journal":{"name":"Current pharmaceutical biotechnology","volume":" ","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Current pharmaceutical biotechnology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0113892010325902241120111429","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Objectives: The aim of this study was to develop a clinical application model for the rational use of caffeine.
Background: Caffeine is related to the incidence of neuro immune gastrointestinal diseases. Coffee consumption needs to be optimized in order to reduce the incidence rate.
Purpose: By using KEEG analysis to explore potential molecular signaling pathways involved in the progression of neurological immune gastrointestinal diseases, and analyzing the details of this signaling Pathway using molecular simulation results, which can support AI system for doctor.
Methods: The research team designed a controlled experiment to analyze the differences in reward and reinforcement of Brain pleasure/addiction and dopamine related signaling pathways function between multiple groups of people with different coffee drinking habits and a blank control group. The study team used molecular dynamics methods to investigate the signaling route that links coffee with the binding of dopamine receptor D3.AI is used to predict the prevalence of gastric reflux disease.
Results: Human experiments have shown a correlation between caffeine intake and gastroesophageal reflux disease. AI algorithm results can provide clinical support, and molecular simulation results are consistent with human experimental results. Caffeine and DRD3 protein have a stable interaction system.
Conclusion: The research team elucidated the intermolecular interaction between caffeine and DRD3, and AI algorithms can predict the likelihood of disease occurrence, providing a new strategy for clinical practice. This study has passed ethical approval at Chifeng Cancer Hospital, and the ethical documents for this study have been submitted to the World Health Organization for filing.
期刊介绍:
Current Pharmaceutical Biotechnology aims to cover all the latest and outstanding developments in Pharmaceutical Biotechnology. Each issue of the journal includes timely in-depth reviews, original research articles and letters written by leaders in the field, covering a range of current topics in scientific areas of Pharmaceutical Biotechnology. Invited and unsolicited review articles are welcome. The journal encourages contributions describing research at the interface of drug discovery and pharmacological applications, involving in vitro investigations and pre-clinical or clinical studies. Scientific areas within the scope of the journal include pharmaceutical chemistry, biochemistry and genetics, molecular and cellular biology, and polymer and materials sciences as they relate to pharmaceutical science and biotechnology. In addition, the journal also considers comprehensive studies and research advances pertaining food chemistry with pharmaceutical implication. Areas of interest include:
DNA/protein engineering and processing
Synthetic biotechnology
Omics (genomics, proteomics, metabolomics and systems biology)
Therapeutic biotechnology (gene therapy, peptide inhibitors, enzymes)
Drug delivery and targeting
Nanobiotechnology
Molecular pharmaceutics and molecular pharmacology
Analytical biotechnology (biosensing, advanced technology for detection of bioanalytes)
Pharmacokinetics and pharmacodynamics
Applied Microbiology
Bioinformatics (computational biopharmaceutics and modeling)
Environmental biotechnology
Regenerative medicine (stem cells, tissue engineering and biomaterials)
Translational immunology (cell therapies, antibody engineering, xenotransplantation)
Industrial bioprocesses for drug production and development
Biosafety
Biotech ethics
Special Issues devoted to crucial topics, providing the latest comprehensive information on cutting-edge areas of research and technological advances, are welcome.
Current Pharmaceutical Biotechnology is an essential journal for academic, clinical, government and pharmaceutical scientists who wish to be kept informed and up-to-date with the latest and most important developments.