Thomas Huthwelker, Camelia N Borca, Davide Altamura, Liberato De Caro, Renzo Vanna, Fabio Corsi, Carlo Morasso, Greta Banfi, Giovanni Arpa, Oliver Bunk, Cinzia Giannini
{"title":"Microcalcifications in breast cancer tissue studied by X-ray absorption, emission, scattering and diffraction.","authors":"Thomas Huthwelker, Camelia N Borca, Davide Altamura, Liberato De Caro, Renzo Vanna, Fabio Corsi, Carlo Morasso, Greta Banfi, Giovanni Arpa, Oliver Bunk, Cinzia Giannini","doi":"10.1107/S1600576724011750","DOIUrl":null,"url":null,"abstract":"<p><p>Microcalcifications (MC) are observed in various tissues and in relation to several diseases. For breast cancer, recent studies have reported differences in the nature of the MC and correlations to the degree of malignancy of the neoplasm. Here, investigations of benign, ductal carcinoma <i>in situ</i> (DCIS) and invasive ductal carcinoma (IDC) breast MC using X-ray fluorescence, X-ray absorption spectroscopy and wide-angle X-ray scattering are reported. While Mg has been observed in all MC, only for the benign MC has a rim of crystalline whitlockite been identified as a minor crystalline phase in addition to the major hy-droxy-apatite (HAP) one. MC in DCIS and IDC tissue exhibit a higher abundance of a high-crystallinity HAP phase in comparison with the less well ordered MC in the benign tissue. Moreover, the distribution of other trace elements in the MC, such as Na, S, Cl, Sr and Y, is observed. For the quantitative analysis of the elemental maps, the experimentally determined sample thickness in each pixel has been incorporated as an additional parameter in the fitting process to account for sample roughness.</p>","PeriodicalId":14950,"journal":{"name":"Journal of Applied Crystallography","volume":"58 Pt 1","pages":"233-250"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11798518/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Crystallography","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1107/S1600576724011750","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0
Abstract
Microcalcifications (MC) are observed in various tissues and in relation to several diseases. For breast cancer, recent studies have reported differences in the nature of the MC and correlations to the degree of malignancy of the neoplasm. Here, investigations of benign, ductal carcinoma in situ (DCIS) and invasive ductal carcinoma (IDC) breast MC using X-ray fluorescence, X-ray absorption spectroscopy and wide-angle X-ray scattering are reported. While Mg has been observed in all MC, only for the benign MC has a rim of crystalline whitlockite been identified as a minor crystalline phase in addition to the major hy-droxy-apatite (HAP) one. MC in DCIS and IDC tissue exhibit a higher abundance of a high-crystallinity HAP phase in comparison with the less well ordered MC in the benign tissue. Moreover, the distribution of other trace elements in the MC, such as Na, S, Cl, Sr and Y, is observed. For the quantitative analysis of the elemental maps, the experimentally determined sample thickness in each pixel has been incorporated as an additional parameter in the fitting process to account for sample roughness.
期刊介绍:
Many research topics in condensed matter research, materials science and the life sciences make use of crystallographic methods to study crystalline and non-crystalline matter with neutrons, X-rays and electrons. Articles published in the Journal of Applied Crystallography focus on these methods and their use in identifying structural and diffusion-controlled phase transformations, structure-property relationships, structural changes of defects, interfaces and surfaces, etc. Developments of instrumentation and crystallographic apparatus, theory and interpretation, numerical analysis and other related subjects are also covered. The journal is the primary place where crystallographic computer program information is published.