Exploring Structural Requirement of Curcumin-Based CK2 Inhibitors as Anticancer Agents: 3D-QSAR, Pharmacophore Modeling, Virtual Screening, and Molecular Docking.

IF 1.9 4区 医学 Q3 CHEMISTRY, MEDICINAL Medicinal Chemistry Pub Date : 2025-02-04 DOI:10.2174/0115734064330612241121071830
Firdous Fatima, Priyanshu Nema, Anushka Garhwal, Sushil Kumar Kashaw
{"title":"Exploring Structural Requirement of Curcumin-Based CK2 Inhibitors as Anticancer Agents: 3D-QSAR, Pharmacophore Modeling, Virtual Screening, and Molecular Docking.","authors":"Firdous Fatima, Priyanshu Nema, Anushka Garhwal, Sushil Kumar Kashaw","doi":"10.2174/0115734064330612241121071830","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Casein Kinase 2 (CK2), discovered as one of the earliest protein kinases, is a ubiquitous Ser/Thr protein kinase-specific to acidic environments. CK2 has been implicated in regulating diverse cellular processes and has been linked to the onset of various diseases, including cancer.</p><p><strong>Method: </strong>Consequently, modulating CK2 function has emerged as a potential therapeutic strategy. However, currently, available CK2 inhibitors or modulators often lack sufficient specificity and potency.</p><p><strong>Results: </strong>The results were validated through QSAR of curcumin derivatives, Pharmacophore modeling, virtual screening performed for filtered curcumin-like featured derivatives from the database, and Molecular Docking approaches. Since there is a solved crystal structure of high-resolution Xray crystal structures of Human protein kinase CK2 alpha in complex with ferulic aldehyde.</p><p><strong>Conclusion: </strong>Also, structure-based virtual screening was performed against a total of 3253 compounds from different libraries, and only the top 4 best-hit compounds with exceptional docking scores exceeding >-7 kcal/mol (more than 7 kcal/mol) were screened and analyzed. However, to validate their therapeutic potential, these compounds require in-vitro evaluation to assess their CK2 targeting ability.</p>","PeriodicalId":18382,"journal":{"name":"Medicinal Chemistry","volume":" ","pages":""},"PeriodicalIF":1.9000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medicinal Chemistry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.2174/0115734064330612241121071830","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, MEDICINAL","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: Casein Kinase 2 (CK2), discovered as one of the earliest protein kinases, is a ubiquitous Ser/Thr protein kinase-specific to acidic environments. CK2 has been implicated in regulating diverse cellular processes and has been linked to the onset of various diseases, including cancer.

Method: Consequently, modulating CK2 function has emerged as a potential therapeutic strategy. However, currently, available CK2 inhibitors or modulators often lack sufficient specificity and potency.

Results: The results were validated through QSAR of curcumin derivatives, Pharmacophore modeling, virtual screening performed for filtered curcumin-like featured derivatives from the database, and Molecular Docking approaches. Since there is a solved crystal structure of high-resolution Xray crystal structures of Human protein kinase CK2 alpha in complex with ferulic aldehyde.

Conclusion: Also, structure-based virtual screening was performed against a total of 3253 compounds from different libraries, and only the top 4 best-hit compounds with exceptional docking scores exceeding >-7 kcal/mol (more than 7 kcal/mol) were screened and analyzed. However, to validate their therapeutic potential, these compounds require in-vitro evaluation to assess their CK2 targeting ability.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
求助全文
约1分钟内获得全文 去求助
来源期刊
Medicinal Chemistry
Medicinal Chemistry 医学-医药化学
CiteScore
4.30
自引率
4.30%
发文量
109
审稿时长
12 months
期刊介绍: Aims & Scope Medicinal Chemistry a peer-reviewed journal, aims to cover all the latest outstanding developments in medicinal chemistry and rational drug design. The journal publishes original research, mini-review articles and guest edited thematic issues covering recent research and developments in the field. Articles are published rapidly by taking full advantage of Internet technology for both the submission and peer review of manuscripts. Medicinal Chemistry is an essential journal for all involved in drug design and discovery.
期刊最新文献
Bioactive Compounds from Myrica esculenta: Antioxidant Insights and Docking Studies on H+K+-ATPase and H2 Receptor Targets. Exploring Structural Requirement of Curcumin-Based CK2 Inhibitors as Anticancer Agents: 3D-QSAR, Pharmacophore Modeling, Virtual Screening, and Molecular Docking. Exploring Pyridine-Based Schemes: A Comprehensive Review on their Synthesis and Therapeutic Applications. Integrating Machine Learning and Pharmacophore Features for Enhanced Prediction of H1 Receptor Blockers. Pyridine Derivatives: A Comprehensive Review of Their Potential as Anti-Diabetic Agents.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1